Using Two Different Approaches to Assess Dietary Patterns: Hypothesis-Driven and Data-Driven Analysis
Abstract
:1. Introduction
2. Methods
2.1. Design and Study Population
2.2. Data Collection
2.3. Diet Quality Assessment
Hypothesis-Oriented Analysis
2.4. Data-Driven Analysis
2.5. Statistical Analysis
Hypothesis-Oriented Analysis
2.6. Data-Driven Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marchioni, D.M.; Latorre, M.R.; Eluf-Neto, J.; Wunsch-Filho, V.; Fisberg, R.M. Identification of dietary patterns using factors analysis in an epidemiological study in São Paulo. Sao Paulo Med. J. 2005, 123, 124–127. [Google Scholar] [CrossRef] [PubMed]
- McNaugton, S.A.; Ball, K.; Mishra, G.D.; Craword, D.A. Dietary patterns of adolescents and risk for obesity and hypertension. J. Nutr. 2008, 138, 364–370. [Google Scholar]
- Thomson, J.L.; Onufrak, S.J.; Connell, C.L.; Zoellner, J.M.; Tussing-Humphreys, L.M.; Bogle, M.L.; Yadrick, K. Food and beverage choices contributing to dietary guidelines adherence in the Lower Mississippi Delta. Public Health Nutr. 2011, 14, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulos, D.; Lagiou, P. Dietary patterns and mortality. Br. J. Nutr. 2001, 85, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Reedy, J.; Wirfält, E.; Flood, A.; Mitrou, P.N.; Krebs-Smith, S.M.; Kipnis, V.; Midthune, D.; Leitzmann, M.; Hollenbeck, A.; Schatzkin, A.; et al. Comparing 3 dietary pattern methods—Cluster analysis, factor analysis, and index analysis—With colorectalcancer risk: The NIH-AARP Diet and Health Study. Am. J. Epidemiol. 2010, 171, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Dood, W.; Midthune, D. A population’s distribution of Healthy Eating Index-2005 component scores can be estimated when more than one 24-h recall is available. J. Nutr. 2010, 40, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H. The MSM program: The web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Byers, T. Dietary assessment resource manual. J. Nutr. 1994, 124, 2245–2317. [Google Scholar]
- Block, G.; Dresser, C.M.; Hartman, A.M.; Carroll, M.D. Nutrient sources in American diet: Quantitative data from NHANES II survey I. Vitamins and minerals. Am. J. Epidemiol. 1985, 122, 13–26. [Google Scholar] [PubMed]
- Fisberg, R.M.; Colucci, A.C.A.; Morimoto, J.M.; Marchioni, D.M.L. Food frequency questionnaire for adults from a population-based study. Rev. Saude Publica 2008, 42, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Previdelli, A.N.; Andrade, S.C.; Pires, M.M.; Ferreira, S.R.G.; Fisberg, R.M.; Marchioni, D.M.L. A revised version of the Healthy Eating Index for Brazilian population. Rev. Saude Publica 2011, 45, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.C.; Previdelli, A.N.; Marchioni, D.M.L.; Fisberg, R.M. Evaluation of the reliability and validity of the Brazilian Healthy Eating Index Revised. Rev. Saude Publica 2013, 47, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Guia Alimentar Para A População Brasileira: Promovendo A Alimentação Saudável. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/guia_alimentar_populacao_brasileira_2008.pdf (accessed on 22 September 2016).
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.S.; Sichieri, R.; Junger, W.L. Assessing usual dietary intake in complex sample design surveys: The National Dietary Survey. Rev. Saude Publica 2003, 47, 171–176. [Google Scholar] [CrossRef]
- Usual Dietary Intakes. Available online: http://appliedresearch.cancer.gov/diet/usualintakes (accessed on 11 March 2016).
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Trygg, J.; Wikstrom, C.; Wold, S. Multi and Megavariate Data Analysis. Part I: Basic Principles and Applications; Umetrics Academy: Umea, Sweden, 2006. [Google Scholar]
- Gorsuch, R.L. Factor Analysis; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1983. [Google Scholar]
- Kline, P. An Easy Guide to Factor Analysis; Routledge: London, UK, 1996. [Google Scholar]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark IV. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. Simple test for heteroscedasticity and random coefficient variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Kupper, L.L.; Muller, K.E.; Nizam, A. Applied Regression Analysis and Other Multivariable Methods; Duxberry Press: Pacific Grove, CA, USA, 1998. [Google Scholar]
- Gujarati, D.N.; Sangeetha, S. Basic Econometrics; Tata Mcgraw-Hill: New Delhi, India, 2007. [Google Scholar]
- Nascimento, S.; Barbosa, F.S.; Sichieri, R.; Pereira, R. Dietary availability patterns of the Brazilian macro-regions. Nutr. J. 2011, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.R.M.; Pereira, R.A.; Cunha, D.B.; Sichieri, R.; Ferreira, M.G.; Vilela, A.A.F.; Gonçalves-Silva, R.M.V. Factors associated with dietary patterns in adolescents: A school-based study in Cuiabá, Mato Grosso. Rev. Bras. Epidemiol. 2012, 15, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Aranceta, J.; Pérez-Rodrigo, C.; Ribas, L.; Serra-Majem, L. Sociodemographic and lifestyle determinants of food patterns in Spanish children and adolescents: The enKid study. Eur. J. Clin. Nutr. 2003, 57, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, G.L.; Oddy, W.H.; Robinson, M.; O’Sullivan, T.A.; Hands, B.P.; de Klerk, N.H.; Silburn, S.R.; Zubrick, S.R.; Kendall, G.E.; Stanley, F.J.; et al. Adolescent dietary patterns are associated with lifestyle and family psycho-social factors. Public Health Nutr. 2009, 12, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Cutler, G.J.; Flood, A.; Hannan, P.; Neumark-zstainer, D. Multiple sociodemographic and socioenvironmental characteristics are correlated with major patterns of dietary intake in adolescents. J. Am. Diet. Assoc. 2011, 104, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Kourlaba, G.; Panagiotakos, D.B.; Mihas, K.; Alevizos, A.; Marayianni, K.; Mariolis, A.; Tountas, Y. Dietary patterns in relation to socio-economic and lifestyle characteristics among Greek adolescents: A multivariate analysis. Public Healthy Nutr. 2009, 12, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.H.; Frazao, E. Away-From-Home Foods Increasingly Important to Quality of American Diet. Available online: https://naldc.nal.usda.gov/download/36798/PDF (accessed on 22 September 2016).
- Brazilian Institute of Geography and Statistics. Pesquisa de Orçamentos Familiares 2008–2009: Análise do Consumo Alimentar Pessoal no Brasil. Available online: http://biblioteca.ibge.gov.br/visualizacao/livros/liv50063.pdf (accessed on 11 March 2016).
- Mikkila, V.; Rasanen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Major dietary patterns and cardiovascular risk factors from childhood to adulthood. Br. J. Nutr. 2007, 98, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Hurley, K.M.; Oberlander, S.E.; Merry, B.C.; Wrobleski, M.M.; Klassen, A.C.; Black, M.M. The healthy eating index and youth healthy eating index are unique, nonredundant measures of diet quality among low-income, African American adolescents. J. Nutr. 2009, 139, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.C.; Barros, M.B.A.; Carandina, L.; Goldbaum, M.; Cesar, C.L.G.; Fisberg, R.M. Dietary quality index and associated factors among adolescents of the state of São Paulo, Brazil. J. Pedriatric. 2010, 156, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Sarno, F.; Claro, R.M.; Levy, R.B.; Bandoni, D.H.; Ferreira, S.R.G.; Monteiro, C.A. Estimated sodium intake by the Brazilian population, 2002–2003. Rev. Saude Publica 2009, 43, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Veiga, G.V.; Costa, R.S.; Araújo, M.C.; Souza, A.M.; Bezerra, I.N.; Barbosa, F.S.; Sichieri, R.; Pereira, R.A. Inadequação do consumo de nutrientes entre adolescentes brasileiros. Rev. Saude Publica 2013, 47, 212–221. [Google Scholar] [CrossRef]
- Zhu, H.; Norman, K.; Ishita Kotak, P.; Gutin, B.; Wang, X.; Bhagatwala, J.; Parikh, S.; Harshfield, G.A.; Dong, Y. Dietary sodium, adiposity, and inflammation in healthy adolescents. Pediatrics 2014, 133, e635–e642. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Select Major Risks. Available online: http://www.who.int/gho/publications/world_health_statistics/EN_WHS2012_Full.pdf (accessed on 11 March 2016).
- Levy, R.B.; Castro, I.R.R.; Cardoso, L.C.; Tavares, L.F.; Sardinha, L.M.V.; Gomes, F.S.; Costa, A.W.N. Food consumption and eating behavior among Brazilian adolescents: National Adolescent School-based Health Survey (PeNSE), 2009. Ciência Saúde Coletiva 2010, 15, 3085–3097. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, N.; Ekanayake, L. Soft drink consumption in Sri Lankan adolescentes. Public Health Nutr. 2012, 15, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Heidemann, C.; Schulze, M.B.; Roosen, J.; Thiele, S.; Mensink, G.B.M. Dietary patterns of adolescents in Germany—Associations with nutrient intake and other health related lifestyle characteristics. Pediatrics 2012, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics. Available online: http://www.who.int/gho/publications/world_health_statistics/EN_WHS2012_Full.pdf (accessed on 11 March 2016).
- Michels, N.; De Henauw, S.; Breidenassel, C.; Censi, L.; Cuenca-Garci, M.; Gonzalez-Gross, M.; Gottrand, F.; Hallstrim, L.; Kafatos, A.; Kersting, M.; et al. European adolescent ready-to-eat-cereal (RTEC) consumers have a healthier dietary intake and body composition compared with non-RTEC consumers. Eur. J. Nutr. 2015, 54, 653–664. [Google Scholar] [CrossRef] [PubMed]
Foods or Food Groups | Main Food Items |
---|---|
Beans and legumes | brown and black bean, chickpea, green pea, snow pea, lentil, soybean |
Rice | white rice |
Sugar | white sugar |
Coffee, teas | coffee, cappuccino, tea |
Pastry, sandwiches | croquette, pastel, rolls, croissant, sandwiches |
Butter and margarine | salted and unsalted butter and margarine |
Beef | beef |
Cookies | simple cakes, sweet breads |
Yogurt and dairy products | yogurts, vitamins with milk |
Semi-skimmed and skimmed milk | semi-skimmed and skimmed milk |
Whole milk | whole milk |
Breads, toasts, crackers | various breads, toasts, crackers and whole grains breads |
Natural flavorings | garlic, herbs, onion, pepper, oregano, basil, parsley |
Chocolate powder | instant breakfast drink |
Vegetables | argula, cabbage, chard, escarole, kale, lettuce, spinach, watercress, beets, broccoli, carrots, cauliflower, chayote, cucumber, eggplant, okra, squash, tomato, turnip, mushrooms, carrots, turnip, potato, corn, green peas, olives |
Cheeses | cheddar, mozzarella, parmesan, provolone, ricotta, cream cheese, American cheese |
Salad dressing | oils, salt, vinegar |
Candies | chocolates, gum drops, |
White meat | Poultry (chicken, turkey) and Fishes |
Processed meats and cold cuts | hamburger, meatballs, sausage, bacon, canned fish, ham, bologna, salami |
Sodas | sodas (diet or regular) |
Juices | juices or flavored drinks, fresh juice |
Pasta | spaghetti, gnocchi, lasagna, ravioli |
Sauces | mayonnaise, ketchup, mustard, tomato sauce, soy sauce, white sauce, hot pepper |
Eggs | egg boiled, eggs fried, omelet, scrambled egg |
Fruits | apple, avocado, banana, grapes, guava, lemon, mango, melon, orange, papaya, peach, pear, persimmon, pineapple, tangerine, watermelon |
Ice cream | ice cream and milk shakes |
Cakes and pies | cake, pie, pudding, topping |
Snacks | chips, manioc chips |
Pork meat | pork meat |
Percentiles | |||||||||
---|---|---|---|---|---|---|---|---|---|
Components | Maximum Allowed | Mean ± SD | 5% | 10% | 25% | 50% | 75% | 90% | 95% |
Male | |||||||||
Total grains | 5.00 | 4.98 ± 0.10 | 4.95 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Whole grains | 5.00 | 0.20 ± 0.29 | 0.00 | 0.02 | 0.04 | 0.10 | 0.24 | 0.49 | 0.72 |
Total fruit a | 5.00 | 1.02 ± 0.57 | 0.15 | 0.33 | 0.60 | 0.97 | 1.39 | 1.80 | 2.02 |
Whole fruit b | 5.00 | 0.29 ± 0.30 | 0.01 | 0.04 | 0.09 | 0.20 | 0.40 | 0.67 | 0.90 |
Total vegetables | 5.00 | 0.85 ± 0.44 | 0.34 | 0.40 | 0.54 | 0.76 | 1.06 | 1.42 | 1.69 |
Dark green and Orange vegetables and Legumes c | 5.00 | 4.03 ± 1.24 | 1.53 | 2.01 | 3.10 | 4.90 | 5.00 | 5.00 | 5.00 |
Milk d | 10.00 | 4.07 ± 2.45 | 0.22 | 1.00 | 2.29 | 3.88 | 5.57 | 7.28 | 8.42 |
Meat, egg and beans e | 10.00 | 8.16 ± 0.94 | 6.63 | 6.94 | 7.51 | 8.15 | 8.82 | 9.46 | 9.86 |
Oils f | 10.00 | 9.99 ± 0.11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Saturated fat | 10.00 | 6.39 ± 1.56 | 3.58 | 4.28 | 5.36 | 6.64 | 7.66 | 8.27 | 8.49 |
Sodium | 10.00 | 1.90 ± 1.09 | 0.00 | 0.36 | 1.11 | 1.91 | 2.68 | 3.33 | 3.71 |
SoFAAS g | 20.00 | 4.42 ± 2.77 | 0.00 | 0.39 | 2.34 | 4.37 | 6.43 | 8.12 | 9.10 |
Overall BHEI-R | 100.00 | 46.3 | 27.41 | 30.77 | 37.98 | 46.88 | 54.25 | 60.84 | 64.91 |
Female | |||||||||
Total grains | 5.00 | 4.98 ± 0.12 | 4.88 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Whole grains | 5.00 | 0.39 ± 0.48 | 0.02 | 0.04 | 0.09 | 0.22 | 0.49 | 0.92 | 1.34 |
Total fruit a | 5.00 | 1.50 ± 0.69 | 0.42 | 0.62 | 1.00 | 1.47 | 1.98 | 2.42 | 2.68 |
Whole fruit b | 5.00 | 0.50 ± 0.45 | 0.05 | 0.09 | 0.19 | 0.37 | 0.68 | 1.08 | 1.40 |
Total vegetables | 5.00 | 1.17 ± 0.61 | 0.46 | 0.55 | 0.74 | 1.04 | 1.44 | 1.96 | 2.31 |
Dark green and Orange vegetables and Legumes c | 5.00 | 4.46 ± 0.98 | 2.15 | 2.79 | 4.26 | 5.00 | 5.00 | 5.00 | 5.00 |
Milk d | 10.00 | 4.91 ± 2.74 | 0.78 | 1.49 | 2.93 | 4.68 | 6.58 | 8.5 | 9.79 |
Meat, egg and beans e | 10.00 | 7.85 ± 1.08 | 6.08 | 6.45 | 7.13 | 7.85 | 8.61 | 9.3 | 9.72 |
Oils f | 10.00 | 9.97 ± 0.22 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Saturated fat | 10.00 | 5.20 ± 1.86 | 1.9 | 2.71 | 3.97 | 5.28 | 6.58 | 7.64 | 8.11 |
Sodium | 10.00 | 2.45 ± 1.18 | 0.41 | 0.88 | 1.64 | 2.48 | 3.27 | 3.98 | 4.38 |
SoFAAS g | 20.00 | 4.59 ± 2.87 | 0 | 0.39 | 2.43 | 4.57 | 6.66 | 8.38 | 9.4 |
Overall BHEI-R | 100.00 | 47.97 | 27.15 | 31.01 | 39.38 | 47.96 | 56.29 | 64.18 | 69.13 |
Overall population | |||||||||
Total grains | 5.00 | 4.98 ± 0.11 | 4.95 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Whole grains | 5.00 | 0.29 ± 0.40 | 0.01 | 0.02 | 0.06 | 0.15 | 0.35 | 0.71 | 1.05 |
Total fruit a | 5.00 | 1.26 ± 0.68 | 0.25 | 0.43 | 0.75 | 1.20 | 1.70 | 2.18 | 2.45 |
Whole fruit b | 5.00 | 0.39 ± 0.39 | 0.03 | 0.05 | 0.12 | 0.27 | 0.53 | 0.90 | 1.18 |
Total vegetables | 5.00 | 1.01 ± 0.55 | 0.37 | 0.45 | 0.62 | 0.89 | 1.25 | 1.71 | 2.07 |
Dark green and Orange vegetables and Legumes c | 5.00 | 4.24 ± 1.14 | 1.75 | 2.30 | 3.60 | 5.00 | 5.00 | 5.00 | 5.00 |
Milk d | 10.00 | 4.48 ± 2.63 | 0.49 | 1.22 | 2.58 | 4.26 | 6.08 | 7.93 | 9.16 |
Meat, egg and beans e | 10.00 | 8.01 ± 1.03 | 6.30 | 6.69 | 7.32 | 8.01 | 8.72 | 9.39 | 9.80 |
Oils f | 10.00 | 9.98 ± 0.18 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Saturated fat | 10.00 | 5.80 ± 1.81 | 2.54 | 3.36 | 4.61 | 5.94 | 7.20 | 8.11 | 8.36 |
Sodium | 10.00 | 2.18 ± 1.17 | 0.10 | 0.57 | 1.34 | 2.18 | 2.99 | 3.70 | 4.12 |
SoFAAS g | 20.00 | 4.51 ± 2.82 | 0.00 | 0.39 | 2.38 | 4.47 | 6.55 | 8.26 | 9.24 |
Overall BHEI-R | 100.00 | 47.13 | 26.79 | 30.48 | 38.38 | 47.37 | 55.37 | 62.89 | 67.43 |
Dietary Patterns | ||
---|---|---|
Food Itens | Traditional | Dual |
Beans and Legumes | 0.74 | −0.07 |
Rice | 0.65 | −0.11 |
Coffee, teas | 0.54 | −0.26 |
Sugar | 0.53 | 0.07 |
Butter and margarine | 0.45 | −0.27 |
Beef | 0.40 | 0.10 |
Cookies | 0.35 | 0.10 |
Pastry, sandwiches | −0.45 | −0.08 |
Breads, toasts, crackers | −0.31 | 0.32 |
Chocolate powder | −0.02 | 0.66 |
Vegetables | 0.10 | 0.56 |
Whole milk | 0.24 | 0.56 |
Salad dressing | 0.84 | 0.50 |
Cheeses | −0.25 | 0.47 |
Processed meats and Cold cuts | −0.01 | 0.35 |
Candies | −0.14 | 0.31 |
Juices | 0.06 | 0.30 |
White meat | 0.18 | 0.28 |
Fruits | 0.10 | 0.24 |
Sodas | −0.11 | 0.20 |
Semi-skimmed and skimmed milk | −0.08 | 0.19 |
Natural flavorings | 0.23 | 0.18 |
Sauces | 0.04 | 0.12 |
Eggs | 0.14 | 0.10 |
Snacks | 0.01 | 0.07 |
Ice cream | −0.04 | 0.06 |
Cakes and pies | −0.167 | 0.06 |
Yogurt and dairy products | −0.13 | −0.02 |
Pork meat | 0.03 | −0.05 |
Pasta | 0.01 | −0.09 |
% Explained Variance | 9.02 | 8.06 |
Accumulative % | 9.02 | 17.08 |
Traditional Pattern | Dual Pattern | ||||||||
---|---|---|---|---|---|---|---|---|---|
Linear Regression | Linear Regression | ||||||||
Univariate | Multivariate | Univariate | Multivariate | ||||||
n (%) | β | p | β | p | β | p | β | p | |
Age (years) | mean (sd): 17.72 (1.18) | 0.17 | 0.01 | 0.12 | 0.09 | −0.04 | 0.48 | 0.09 | 0.25 |
Gender | |||||||||
female | 117 (51%) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
male | 112 (49%) | −0.69 | p < 0.01 | −0.70 | p < 0.01 | 0.08 | 0.57 | −0.05 | 0.71 |
Smoking habits | |||||||||
non-smoker | 199 (87%) | 1.00 | - | 1.00 | - | ||||
Smoker/former smoker | 30 (13%) | 0.37 | 0.06 | −0.16 | 0.42 | ||||
Alcoholic beverages | |||||||||
no | 72 (31%) | 1.00 | - | 1.00 | - | ||||
yes | 157 (67%) | −0.02 | 0.88 | 0.02 | 0.89 | ||||
Family head’s schooling | |||||||||
low | 128 (58%) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
medium | 73 (33%) | −0.30 | 0.04 | −0.23 | 0.13 | 0.36 | 0.01 | 0.26 | 0.10 |
high | 21 (9%) | −0.73 | 0.01 | −0.59 | 0.05 | 0.83 | p < 0.01 | 0.56 | 0.03 |
Family head’s marital status | |||||||||
living alone | 67 (29%) | 1.00 | - | 1.00 | 1.00 | ||||
living with a partner/married | 162 (71%) | 0.13 | 0.39 | 0.33 | 0.02 | 0.32 | 0.04 | ||
Weight status | |||||||||
normal weight ¹ | 134 (68%) | 1.00 | - | 1.00 | 1.00 | ||||
overweight | 21 (11%) | 0.10 | 0.65 | 0.14 | 0.51 | 0.17 | 0.43 | −0.03 | 0.90 |
obesity | 42 (21%) | 0.22 | 0.19 | 0.09 | 0.60 | −0.18 | 0.28 | 0.01 | 0.99 |
Adolecent’s remunerated activity | |||||||||
no | 119 (53%) | 1.00 | - | 1.00 | - | ||||
yes | 105 (47%) | 0.13 | 0.32 | 0.01 | 0.96 | ||||
Family income ² | |||||||||
<1 minimum wage | 70 (35%) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
≥1 minimum wage | 129 (65%) | −0.45 | 0.01 | −0.31 | 0.04 | 0.50 | 0.01 | 0.48 | 0.01 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Previdelli, Á.N.; De Andrade, S.C.; Fisberg, R.M.; Marchioni, D.M. Using Two Different Approaches to Assess Dietary Patterns: Hypothesis-Driven and Data-Driven Analysis. Nutrients 2016, 8, 593. https://doi.org/10.3390/nu8100593
Previdelli ÁN, De Andrade SC, Fisberg RM, Marchioni DM. Using Two Different Approaches to Assess Dietary Patterns: Hypothesis-Driven and Data-Driven Analysis. Nutrients. 2016; 8(10):593. https://doi.org/10.3390/nu8100593
Chicago/Turabian StylePrevidelli, Ágatha Nogueira, Samantha Caesar De Andrade, Regina Mara Fisberg, and Dirce Maria Marchioni. 2016. "Using Two Different Approaches to Assess Dietary Patterns: Hypothesis-Driven and Data-Driven Analysis" Nutrients 8, no. 10: 593. https://doi.org/10.3390/nu8100593