An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Design
2.2. Compliance, Health, and Physical Activity Determinations
2.3. Blood Pressure and Anthropometric Determinations
2.4. Dietary Assessment
2.5. Sampling and Biochemical Analyses
2.6. Sample Size Calculation
2.7. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Apo | apolipoprotein |
BW | sodium-bicarbonated mineral water |
CW | control mineral water low in mineral content |
References
- Gandy, J. Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015, 54, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Gandy, J. Erratum to: Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015, 54, 1031. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Jahnen, A.; Hesse, A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur. J. Clin. Nutr. 2004, 58, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Bohmer, H.; Muller, H.; Resch, K.L. Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporos. Int. 2000, 11, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Oubina, P.; Sanchez-Muniz, F.J.; Gomez-Gerique, J.A.; Vaquero, M.P. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J. Nutr. 2004, 134, 1058–1063. [Google Scholar] [PubMed]
- Perez-Granados, A.M.; Navas-Carretero, S.; Schoppen, S.; Vaquero, M.P. Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J. Nutr. Biochem. 2010, 21, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Schoppen, S.; Sanchez-Muniz, F.J.; Perez-Granados, M.; Gomez-Gerique, J.A.; Sarria, B.; Navas-Carretero, S.; Vaquero, M.P. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women? Nutr. Hosp. 2007, 22, 538–544. [Google Scholar] [PubMed]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Sarria, B.; Sanchez-Muniz, F.J.; Gomez-Gerique, J.A.; Vaquero, M.P. Sodium bicarbonated mineral water decreases postprandial lipaemia in postmenopausal women compared to a low mineral water. Br. J. Nutr. 2005, 94, 582–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toxqui, L.; Perez-Granados, A.M.; Blanco-Rojo, R.; Vaquero, M.P. A sodium-bicarbonated mineral water reduces gallbladder emptying and postprandial lipaemia: A randomised four-way crossover study. Eur. J. Nutr. 2012, 51, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; de la Piedra, C.; Vaquero, M.P. Bone remodelling is not affected by consumption of a sodium-rich carbonated mineral water in healthy postmenopausal women. Br. J. Nutr. 2005, 93, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov: U.S. National Institutes of Health. Available online: https://clinicaltrials.gov/ct2/show/NCT02480816?term=NCT02480816&rank=1 (accessed on 27 June 2016).
- CONSORT: Transparent Reporting of Trials. Available online: http://www.consort-statement.org/ (accessed on 4 April 2016).
- Otvos, J.D.; Mora, S.; Shalaurova, I.; Greenland, P.; Mackey, R.H.; Goff, D.C., Jr. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J. Clin. Lipidol. 2011, 5, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Otvos, J.D.; Jeyarajah, E.J.; Cromwell, W.C. Measurement issues related to lipoprotein heterogeneity. Am. J. Cardiol. 2002, 90, i22–i29. [Google Scholar] [CrossRef]
- Duffey, K.J.; Davy, B.M. The healthy beverage index is associated with reduced cardiometabolic risk in US adults: A preliminary analysis. J. Acad. Nutr. Diet. 2015, 115, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ramirez, S.; de Cosio, G.T.; Mendez, M.A.; Tucker, K.L.; Mendez-Ramirez, I.; Hernandez-Cordero, S.; Popkin, B.M. A water and education provision intervention modifies the diet in overweight Mexican women in a randomized controlled trial. J. Nutr. 2015, 145, 1892–1899. [Google Scholar] [CrossRef] [PubMed]
- Stookey, J.D.; Constant, F.; Gardner, C.D.; Popkin, B.M. Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity 2007, 15, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Ludwig, D.S.; Sonneville, K.; Gortmaker, S.L. Impact of change in sweetened caloric beverage consumption on energy intake among children and adolescents. Arch. Pediatr. Adolesc. Med. 2009, 163, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.; Sullivan, L.; Jacques, P.F.; Wang, T.J.; Fox, C.S.; Meigs, J.B.; D’Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 2007, 116, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. Fructose and cardiometabolic health: What the evidence from sugar-sweetened beverages tells us. J. Am. Coll. Cardiol. 2015, 66, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- EFSA panel on dietetic products nutrition and allergies. Scientific opinion on dietary reference values for water. EFSA J. 2010, 8, 1459–4507. [Google Scholar]
- Institute of Medicine. Water. In Dietary Reference Intakes: Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2005; pp. 73–185. [Google Scholar]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.F.; Zhao, X.H.; Parpia, B.; Campbell, T.C. Dietary intakes and urinary excretion of calcium and acids: A cross-sectional study of women in China. Am. J. Clin. Nutr. 1993, 58, 398–406. [Google Scholar] [PubMed]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [PubMed]
- Fagherazzi, G.; Vilier, A.; Bonnet, F.; Lajous, M.; Balkau, B.; Boutron-Rualt, M.C.; Clavel-Chapelon, F. Dietary acid load and risk of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia 2014, 57, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Strohle, A.; Waldmann, A.; Koschizke, J.; Leitzmann, C.; Hahn, A. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: Results from the German vegan study. Ann. Nutr. Metab. 2011, 59, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.S.; Kozan, P.; Samocha-Bonet, D. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans. Biochimie 2015. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.S.; Heilbronn, L.K.; Chen, D.L.; Coster, A.C.; Greenfield, J.R.; Samocha-Bonet, D. Dietary acid load, metabolic acidosis and insulin resistance—Lessons from cross-sectional and overfeeding studies in humans. Clin. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Sarria, B.; Navas-Carretero, S.; Vaquero, M.P. Sodium-bicarbonated mineral water decreases aldosterone levels without affecting urinary excretion of bone minerals. Int. J. Food Sci. Nutr. 2005, 59, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Toxqui, L.; Vaquero, M.P. Aldosterone changes after consumption of a sodium-bicarbonated mineral water in humans. A four-way randomized controlled trial. J. Physiol. Biochem. 2016. [Google Scholar] [CrossRef]
Control Water, mg/L (mmol/L) | Bicarbonated Water, mg/L (mmol/L) 1 | |
---|---|---|
Bicarbonate | 74.9 (1.23) | 2050 (33.55) |
Chloride | 4.8 (0.14) | 622 (17.55) |
Sulphate | 10.6 (0.22) | 50 (1.04) |
Fluor | 0.2 (0.01) | 0.73 (0.04) |
Calcium | 22.6 (1.13) | 20.8 (1.04) |
Magnesium | 2.8 (0.23) | 5.8 (0.48) |
Sodium | 7.6 (0.33) | 1090 (47.45) |
Potassium | 1.7 (0.04) | 47.2 (1.21) |
Parameter | Baseline | 4 Weeks | 8 Weeks | Time | Time × Water |
---|---|---|---|---|---|
T-chol (mmol/L) | |||||
BW | 5.80 ± 0.77 | 5.70 ± 0.73 | 5.54 ± 0.73 | 0.004 | 0.24 |
CW | 5.78 ± 0.71 | 5.66 ± 0.76 | 5.67 ± 0.73 | ||
LDL-chol (mmol/L) | |||||
BW | 3.79 ± 0.81 | 3.70 ± 0.72 | 3.57 ± 0.70 | 0.001 | 0.18 |
CW | 3.77 ± 0.71 | 3.62 ± 0.70 | 3.65 ± 0.74 | ||
HDL-chol (mmol/L) | |||||
BW | 1.67 ± 0.47 | 1.68 ± 0.48 | 1.69 ± 0.50 | 0.52 | 0.52 |
CW | 1.70 ± 0.54 | 1.66 ± 0.53 | 1.68 ± 0.53 | ||
Triglyceride (mmol/L) | |||||
BW | 1.24 ± 0.66 | 1.21 ± 0.61 | 1.26 ± 0.65 | 0.26 | 0.13 |
CW | 1.27 ± 0.50 | 1.22 ± 0.56 | 1.20 ± 063 | ||
T-chol/HDL-chol | |||||
BW | 3.74 ± 1.15 | 3.63 ± 1.04 | 3.54 ± 1.04 | 0.049 | 0.24 |
CW | 3.67 ± 1.05 | 3.69 ± 1.05 | 3.64 ± 1.06 | ||
LDL-chol/HDL-chol | |||||
BW | 2.50 ± 0.97 | 2.40 ± 0.88 | 2.32 ± 0.85 | 0.036 | 0.21 |
CW | 2.44 ± 0.89 | 2.42 ± 0.89 | 2.40 ± 0.90 | ||
Oxidised LDL (mU/L) | |||||
BW | 56.7 ± 17.5 | 58.0 ± 18.6 | 54.7 ± 16.2 | 0.073 | 0.50 |
CW | 59.2 ± 18.2 | 57.9 ± 16.5 | 56.8 ± 16.3 | ||
Apo AI (mg/dL) | |||||
BW | 169.8 ± 30.8 | 169.1 ± 31.6 | 171.2 ± 32.5 | 0.52 | 0.69 |
CW | 171.1 ± 31.8 | 169.3 ± 35.8 | 169.9 ± 32.5 | ||
Apo B (mg/dL) | |||||
BW | 114.3 ± 20.7 | 119.5 ± 19.1 | 119.6 ± 18.9 | <0.001 | 0.45 |
CW | 114.5 ± 18.8 | 119.7 ± 21.1 | 122.2 ± 20.3 | ||
LDL-chol/Apo B | |||||
BW | 1.28 ± 0.08 | 1.19 ± 0.10 | 1.15 ± 0.09 | <0.001 | 0.36 |
CW | 1.27 ± 0.08 | 1.17 ± 0.12 | 1.15 ± 0.09 | ||
HDL-chol/Apo AI | |||||
BW | 0.38 ± 0.06 | 0.38 ± 0.06 | 0.38 ± 0.06 | 0.89 | 0.23 |
CW | 0.38 ± 0.09 | 0.37 ± 0.06 | 0.38 ± 0.07 | ||
Glucose (mmol/L) | |||||
BW | 4.95 ± 0.41 | 4.94 ± 0.46 | 4.80 ± 0.41 | 0.006 | 0.15 |
CW | 4.90 ± 0.47 | 4.95 ± 0.47 | 4.88 ± 0.44 | ||
Insulin (μIU/mL) | |||||
BW | 10.4 ± 5.0 | 10.3 ± 4.6 | 10.1 ± 4.5 | 0.18 | 0.16 |
CW | 9.8 ± 4.4 | 11.4 ± 6.5 | 10.2 ± 5.8 | ||
Serum aldosterone (pg/mL) | |||||
BW | 252.4 ± 83.0 | - | 241.3 ± 69.5 | 0.72 | 0.08 |
CW | 251.7 ± 76.7 | - | 259.0 ± 85.2 | ||
Systolic blood pressure (mmHg) | |||||
BW | 119.6 ± 12.7 | 119.0 ± 15.2 | 119.8 ± 14.0 | 0.41 | 0.45 |
CW | 121.1 ± 14.5 | 119.2 ± 13.6 | 118.8 ± 13.7 | ||
Diastolic blood pressure (mmHg) | |||||
BW | 72.6 ± 9.8 | 71.6 ± 8.9 | 72.6 ± 8.4 | 0.92 | 0.21 |
CW | 71.4 ± 9.4 | 72.5 ± 9.8 | 72.0 ± 8.5 |
Baseline | 8 Weeks | Time | Time × Water | |
---|---|---|---|---|
Energy (kcal) | ||||
BW | 152 ± 157 | 118 ± 186 | 0.015 | 0.86 |
CW | 163 ± 180 | 123 ± 129 | ||
Protein (g) | ||||
BW | 1.1 ± 1.4 | 1.0 ± 1.5 | 0.12 | 0.40 |
CW | 1.3 ± 1.5 | 1.0 ± 1.1 | ||
Carbohydrate (g) | ||||
BW | 21.1 ± 22.0 | 14.7 ± 27.5 | 0.004 | 0.74 |
CW | 20.3 ± 18.6 | 15.1 ± 14.9 | ||
Lipid (g) | ||||
BW | 0.3 ± 0.4 | 0.4 ± 1.1 | 0.78 | 0.49 |
CW | 0.3 ± 0.3 | 0.3 ± 0.4 | ||
Alcohol (g) | ||||
BW | 8.2 ± 13.0 | 6.8 ± 12.1 | 0.11 | 0.68 |
CW | 10.1 ± 18.0 | 7.7 ± 11.8 | ||
Fluid (mL) * | ||||
BW | 1713 (975) | 1849 (730) † | 0.020 | - |
CW | 1579 (939) | 1867 (609) † | 0.002 |
Baseline | 8 Weeks | p | |||||
---|---|---|---|---|---|---|---|
Mean | Median | IQR | Mean | Median | IQR | ||
Soft drinks | 211.9 | 133.3 | 333 | 124.2 | 66.7 | 243 | <0.001 |
Fruit juice | 69.2 | 0 | 133 | 41.2 | 0 | 67 | 0.001 |
Milk | 119.9 | 66.7 | 200 | 101.9 | 66.7 | 198 | 0.13 |
Black coffee | 11.6 | 0 | 0 | 8.7 | 0 | 0 | 0.23 |
Latte, coffee with milk | 128.5 | 116.7 | 233 | 130.2 | 116.7 | 200 | 0.77 |
Tea | 24.9 | 0 | 0 | 17.3 | 0 | 0 | 0.54 |
Wine | 25.6 | 0 | 0 | 18.4 | 0 | 0 | 0.14 |
Beer | 126.3 | 0 | 133 | 91.3 | 0 | 110 | 0.056 |
Distilled alcoholic beverages | 7.7 | 0 | 0 | 7.8 | 0 | 0 | 0.96 |
Total fluid intake 1 | 1850 | 1612 | 953 | 2012 | 1867 | 705 | <0.001 |
Parameter | Baseline | 8 Weeks | Time | Time × Water |
---|---|---|---|---|
Urinary pH | ||||
BW | 5.9 ± 0.6 | 6.2 ± 0.6 | 0.022 | 0.047 |
CW | 5.9 ± 0.7 | 5.9 ± 0.5 | ||
Calcium/creatinine | ||||
BW | 0.282 ± 0.152 | 0.233 ± 0.131 | 0.66 | 0.038 |
CW | 0.287 ± 0.213 | 0.363 ± 0.450 | ||
Potassium/creatinine | ||||
BW | 3.11 ± 1.78 | 2.86 ± 1.75 | 0.033 | 0.40 |
CW | 3.15 ± 1.77 | 2.58 ± 1.22 | ||
Sodium/creatinine | ||||
BW | 9.71 ± 5.12 | 10.82 ± 6.03 | 0.21 | 0.56 |
CW | 8.82 ± 7.79 | 9.23 ± 5.42 | ||
Phosphate/creatinine | ||||
BW | 2.98 ± 1.14 | 3.04 ± 1.04 | 0.15 | 0.39 |
CW | 2.98 ± 1.03 | 3.25 ± 1.20 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toxqui, L.; Vaquero, M.P. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults. Nutrients 2016, 8, 400. https://doi.org/10.3390/nu8070400
Toxqui L, Vaquero MP. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults. Nutrients. 2016; 8(7):400. https://doi.org/10.3390/nu8070400
Chicago/Turabian StyleToxqui, Laura, and M. Pilar Vaquero. 2016. "An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults" Nutrients 8, no. 7: 400. https://doi.org/10.3390/nu8070400
APA StyleToxqui, L., & Vaquero, M. P. (2016). An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults. Nutrients, 8(7), 400. https://doi.org/10.3390/nu8070400