Validation of a Dish-Based Semiquantitative Food Questionnaire in Rural Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. FFQ
2.3. Weighed FD
2.4. Analysis of Food and Nutrient Intake
2.5. Statistical Analysis
2.6. Integrative Interpretation of Statistical Outcomes
3. Results
3.1. Seasonal Variability
3.2. Correlation of FD with True Intake
3.3. Validity
3.4. Classification
3.5. Integrative Interpretation of Statistical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ahmed, A.U. Patterns of Food Consumption and Nutrition in Rural Bangladesh; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 1993. [Google Scholar]
- Hassan, N.; Ahmad, K. Intra-familial distribution of food in rural Bangladesh. Food Nutr. Bull. 1984, 5, 90. [Google Scholar]
- Karim, M.R.; Ahmad, S.A. Nutritional Status among the Children of Age Group 5–14 Years in Selected Arsenic Exposed and Non-Exposed Areas of Bangladesh. J. Fam. Reprod. Health 2014, 8, 161. [Google Scholar]
- World Bank. Bangladesh—Household Income and Expenditure Survey: Key Findings and Results 2010; The World Bank Group: Washington, DC, USA, 2011. [Google Scholar]
- Akhtaruzzaman, M.; Khan, N.I.; Islam, S.N. Nutrition, Health and Demographic Survey of Bangladesh-2011; United States Agency for International Development (USAID) Bangladesh: Dhaka, Bangladesh, 2013.
- Ahmed, A. Bangladesh Integrated Household Survey (BIHS) 2011–2012; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2013. [Google Scholar]
- Helen Keller International (HKI); James P. Grant School of Public Health (JPGSPH). States of Food Security and Nutrition in Bangladesh: 2013; HKI and JPGSPH: Dhaka, Bangladesh, 2014. [Google Scholar]
- Willet, W. Food Frequency Methods. In Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2013; pp. 71–72. [Google Scholar]
- Chen, Y.; Ahsan, H.; Parvez, F.; Howe, G.R. Validity of a food-frequency questionnaire for a large prospective cohort study in Bangladesh. Br. J. Nutr. 2004, 92, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. Nutritional Epidemiology, 2nd ed.; Willett, W.C., Ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Cade, J.E.; Burley, V.J.; Warm, D.L.; Thompson, R.L.; Margetts, B.M. Food-frequency questionnaires: A review of their design, validation and utilisation. Nutr. Res. Rev. 2004, 17, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Stark, A. An historical review of the Harvard and the National Cancer Institute food frequency questionnaires: Their similarities, differences, and their limitations in assessment of food intake. Ecol. Food Nutr. 2002, 41, 35–74. [Google Scholar] [CrossRef]
- Kile, M.L.; Houseman, E.A.; Breton, C.V.; Smith, T.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Christiani, D.C. Dietary arsenic exposure in Bangladesh. Environ. Health Perspect. 2007, 115, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Kile, M.L.; Houseman, E.A.; Breton, C.V.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Christiani, D.C. Association between total ingested arsenic and toenail arsenic concentrations. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2007, 42, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.; Rahim, A.T.; Mohiduzzaman, M.; Banu, C.P.; Bari, L.; Tukun, B.; Mannan, M.; Bhattacharjee, L.; Stadlmayr, B. Food Composition Table for Bangladesh; Institute of Nutrition and Food Science; Centre for Advanced Research in Sciences; University of Dhaka: Dhaka, Bangladesh, 2013. [Google Scholar]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M.J.; Steyn, N.P.; Charlton, K.E.; Senekal, M. Application and interpretation of multiple statistical tests to evaluate validity of dietary intake assessment methods. Nutr. J. 2015, 14, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kile, M.L.; Houseman, E.A.; Rodrigues, E.; Smith, T.J.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Su, L.; Christiani, D.C. Toenail arsenic concentrations, GSTT1 gene polymorphisms, and arsenic exposure from drinking water. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Weisell, R.; Dop, M.C. The adult male equivalent concept and its application to Household Consumption and Expenditures Surveys (HCES). Food Nutr. Bull. 2012, 33, S157–S162. [Google Scholar] [CrossRef] [PubMed]
- Nahar, Q. Desirable Dietary Pattern for Bangladesh; National Food Policy Capacity Strengthening Programme: Dhaka, Bangladesh, 2013. [Google Scholar]
- Bermudez, O.I.; Lividini, K.; Smitz, M.-F.; Fiedler, J.L. Estimating micronutrient intakes from Household Consumption and Expenditures Surveys (HCES): An example from Bangladesh. Food Nutr. Bull. 2012, 33, S208–S213. [Google Scholar] [CrossRef] [PubMed]
- Charrondiere, R.U.; Stadlmayr, B.; Haytowitz, D.; Oseredczuk, M.; Ireland, J.; Wolmarans, P.; Rittenschober, D.; Selly, B.; Puwastien, P.; Reykdal, O.; et al. FAO/INFOODs Guidelines for Checking Food Composition Data Prior to the Publication of a User Table/Database Version 1.0; International Network of Food Data Systems (INFOODS): Rome, Italy, 2012. [Google Scholar]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Sampat, M.P.; Whitman, G.J.; Stephens, T.W.; Broemeling, L.D.; Heger, N.A.; Bovik, A.C.; Markey, M.K. The reliability of measuring physical characteristics of spiculated masses on mammography. Br. J. Radiol. 2006, 79, S134–S140. [Google Scholar] [CrossRef] [PubMed]
- Winer, B. Statistical Principles in Experimental Design; McGraw-Hill Book Company: New York, NY, USA, 1962. [Google Scholar]
- Black, A.E.; Cole, T.J.; Wiles, S.J.; White, F. Daily variation in food intake of infants from 2 to 18 months. Hum. Nutr. Appl. Nutr. 1983, 37, 448–458. [Google Scholar] [PubMed]
- Kuehneman, T.; Stanek, K.; Eskridge, K.; Angle, C. Comparability of four methods for estimating portion sizes during a food frequency interview with caregivers of young children. J. Am. Diet. Assoc. 1994, 94, 548–551. [Google Scholar] [CrossRef]
- Venter, C.S.; MacIntyre, U.E.; Vorster, H.H. The development and testing of a food portion photograph book for use in an African population. J. Hum. Nutr. Diet. 2000, 13, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [PubMed]
- Beaton, G.H.; Milner, J.; McGuire, V.; Feather, T.E.; Little, J.A. Source of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. Am. J. Clin. Nutr. 1983, 37, 986–995. [Google Scholar] [PubMed]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Cicchetti, D.V.; Allison, T. A new procedure for assessing reliability of scoring EEG sleep recordings. Am. J. EEG Technol. 1971, 11, 101–109. [Google Scholar]
- Feinstein, A.R.; Cicchetti, D. V High agreement but low kappa: I. The problems of two paradoxes. J. Clin. Epidemiol. 1990, 43, 543–549. [Google Scholar] [CrossRef]
- Dehghan, M.; Martinez, S.; Zhang, X.; Seron, P.; Lanas, F.; Islam, S.; Merchant, A.T. Relative validity of an FFQ to estimate daily food and nutrient intakes for Chilean adults. Public Health Nutr. 2013, 16, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Lee, R.; Neiman, D. Nutritional Assessment, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- MacIntyre, U.E.; Venter, C.S.; Vorster, H.H. A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighted records and biomarkers. Public Health Nutr. 2001, 4, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.D.M.; Takeyama, L.; Voci, S.M.; Slater, B.; Silva, M.V. Within- and between-person variations as determinant factors to calculate the number of observations to estimate usual dietary intake of adolescents. Rev. Bras. Epidemiol. 2008, 11, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Salvini, S.; Hunter, D.J.; Sampson, L.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Willett, W.C. Food-based validation of a dietary questionnaire: The effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989, 18, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Feskanich, D.; Rimm, E.; Giovannucci, E.; Colditz, G.; Stampfer, M.; Litin, L.; Willett, W. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J. Am. Diet. Assoc. 1993, 93, 790–796. [Google Scholar] [CrossRef]
- Macedo-Ojeda, G.; Vizmanos-Lamotte, B.; Márquez-Sandoval, Y.F.; Rodríguez-Rocha, N.P.; López-Uriarte, P.J.; Fernández-Ballart, J.D. Validation of a semi-quantitative food frequency questionnaire to assess food groups and nutrient intake. Nutr. Hosp. 2013, 28, 2212–2220. [Google Scholar] [PubMed]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Wheeler, E.F. Seasonal variations, and the intra-household distribution of food in a Bangladeshi village. Am. J. Clin. Nutr. 1985, 41, 1305–1313. [Google Scholar] [PubMed]
- Brown, K.H.; Black, R.E.; Robertson, A.D.; Becker, S. Effects of season and illness on the dietary intake of weanlings during longitudinal studies in rural Bangladesh. Am. J. Clin. Nutr. 1985, 41, 343–355. [Google Scholar] [PubMed]
- Abdullah, M.; Ahmed, L. Validating a simplified approach to the dietary assessment of vitamin A intake in preschool children. Eur. J. Clin. Nutr. 1993, 47, 115–122. [Google Scholar] [PubMed]
- Boyle, A. Community Nutrition in Action: An Entrepreneurial Approach, 6th ed.; Cengage Learning: Belmont, OH, USA, 2012. [Google Scholar]
- Michels, K.B.; Willett, W.C. Self-administered semiquantitative food frequency questionnaires: Patterns, predictors, and interpretation of omitted items. Epidemiology 2009, 20, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Berti, P.R. Intrahousehold distribution of food: A review of the literature and discussion of the implications for food fortification programs. Food Nutr. Bull. 2012, 33, S163–S169. [Google Scholar] [CrossRef] [PubMed]
- Sununtnasuk, C. Individual Energy and Nutrient Intake from a 24-Hour and 7-Day Recall: Comparing Estimates Using the 2011/2012 Bangladesh Integrated Household Survey; United States Agency for International Development (USAID): Washington, DC, USA, 2014. [Google Scholar]
- Cole, T. Design Concepts in Nutritional Epidemiology; Margetts, B., Nelson, M., Eds.; Oxford Scholarship Online: Oxford, UK, 1991. [Google Scholar]
- Karkeck, J.M. Improving the use of dietary survey methodology. J. Am. Diet. Assoc. 1987, 87, 869–871. [Google Scholar] [PubMed]
Variables * | n | % | |
---|---|---|---|
Sex (n = 190) | |||
Male | 87 | 45.79 | |
Female | 103 | 54.21 | |
Age (years) (n = 190) | |||
<10 | 5 | 2.6 | |
11–20 | 53 | 27.9 | |
21–30 | 41 | 21.6 | |
31–40 | 45 | 23.7 | |
41–50 | 29 | 15.3 | |
51–60 | 10 | 5.3 | |
>60 | 7 | 3.7 | |
Median | 30.0 | ||
Mean | 31.3 | ||
SD | 14.7 | ||
Job Type (n = 190) | |||
Farmer | 2 | 1.0 | |
Agricultural labor | 1 | 0.5 | |
Factory labor | 16 | 8.4 | |
Businessman | 16 | 8.4 | |
Craftsman | 0 | 0.0 | |
Office worker | 4 | 2.1 | |
Housewife | 77 | 40.5 | |
Student | 31 | 16.3 | |
Jobless | 7 | 3.7 | |
Others | 10 | 5.3 | |
missing | 26 | 13.7 | |
BMI Z-score (for age 5–19 years, n = 48) | |||
1 SD | 5 | 10.4 | |
0 SD | 5 | 10.4 | |
−1 SD | 12 | 25.0 | |
−2 SD | 13 | 27.1 | |
−3 SD | 7 | 14.6 | |
−4 SD | 6 | 12.5 | |
BMI (kg/m2, for age >20 years, n = 142) | |||
<18.1 | 30 | 21.1 | |
18.1–20.5 | 39 | 27.5 | |
>20.5 | 73 | 51.4 | |
Median | 20.8 | ||
Mean | 20.9 | ||
SD | 3.6 | ||
Education (for age >20 years, n = 142) | |||
Illiterate | 25 | 17.6 | |
Able to write | 50 | 35.2 | |
Primary education | 24 | 16.9 | |
Secondary education | 21 | 14.8 | |
Higher secondary education | 14 | 9.9 | |
College/graduate | 4 | 2.8 | |
Post-graduate education | 4 | 2.8 | |
Missing | 0 |
Dietary Intake 1 | ICC 2 | p-Value | rh | |
---|---|---|---|---|
Energy (kcal) | 0.80 | <0.001 | 0.928 | |
Food Group | ||||
Beverages | 0.82 | <0.001 | 0.942 | |
Grain, Cereal, Bread based | 0.78 | <0.001 | 0.931 | |
Milk based | 0.53 | <0.001 | 0.820 | |
Vegetable based | 0.53 | 0.66 | 0.825 | |
Fish, Poultry, Meat, Egg based | 0.50 | <0.001 | 0.821 | |
Fruits | 0.24 | <0.001 | 0.672 | |
Legumes, Pulses, Seeds based | 0.20 | <0.001 | 0.616 | |
Nutrients | ||||
Alpha-carotene (mcg) | 0.85 | <0.001 | 0.748 | |
Potassium (mg) | 0.80 | <0.001 | 0.844 | |
Niacin, preformed (mg) | 0.80 | <0.001 | 0.767 | |
Protein (g) | 0.80 | <0.001 | 0.881 | |
Carbohydrate available (g) | 0.79 | 0.02 | 0.851 | |
Thiamin (mg) | 0.78 | <0.001 | 0.862 | |
Phosphorus (mg) | 0.78 | <0.001 | 0.837 | |
Riboflavin (mg) | 0.76 | <0.001 | 0.869 | |
Ash (g) | 0.74 | <0.001 | 0.654 | |
Calcium (mg) | 0.73 | <0.001 | 0.759 | |
Vitamin B6 (mg) | 0.73 | <0.001 | 0.779 | |
Total cryptoxanthin (mcg) | 0.72 | <0.001 | 0.712 | |
Zinc (mg) | 0.71 | <0.001 | 0.411 | |
Niacin equivalents (mg) | 0.70 | <0.001 | 0.834 | |
Beta-carotene equivalents (mcg) | 0.70 | <0.001 | 0.748 | |
Copper (mg) | 0.70 | <0.001 | 0.795 | |
Niacin equivalents from tryptophan (mg) | 0.69 | <0.001 | 0.870 | |
Folate (mcg) | 0.69 | <0.001 | 0.848 | |
Total dietary fiber (g) | 0.69 | <0.001 | 0.643 | |
Magnesium (mg) | 0.68 | <0.001 | 0.547 | |
Vitamin E (mg) | 0.66 | <0.001 | 0.806 | |
L-ascorbic acid (mg) | 0.62 | <0.001 | 0.768 | |
Fat (g) | 0.60 | <0.001 | 0.813 | |
Sodium (mg) | 0.59 | <0.001 | 0.729 | |
Retinol (mcg) | 0.53 | 0.19 | 0.751 | |
Iron (mg) | 0.50 | <0.001 | 0.852 | |
Vitamin D (mcg) | 0.49 | <0.001 | 0.787 | |
Beta-carotene (mcg) | 0.45 | <0.001 | 0.709 | |
Vitamin A (mcg) | 0.38 | <0.001 | 0.534 |
Food Group | Average Daily Consumption (Serving/Day) | Level of Agreement | Correlation Coefficient * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FD | FFQ | FFQ-FD 1 | FFQ:FD 2 | Unadjusted 3 | Energy-Adjusted 4 | Deattenuated 5 | |||||
Mean | SD | Mean | SD | p-Value 6 | Mean | SD | Pearson | Pearson | Pearson | ||
Grain, Cereal, Bread | 4.70 | 1.67 | 9.83 | 2.42 | <0.001 | 5.14 | 2.30 | 2.22 | 0.42 | 0.33 | 0.35 |
Vegetable | 1.88 | 1.13 | 1.53 | 0.25 | <0.001 | −0.38 | 1.05 | 0.91 | 0.16 | 0.21 | 0.25 |
Legumes, Pulses, Seeds | 1.15 | 0.24 | 1.16 | 0.14 | 0.620 | 0.00 | 0.26 | 1.03 | 0.23 | 0.34 | 0.55 |
Fish, Poultry, Meat, Egg | 1.30 | 0.30 | 1.74 | 0.89 | <0.001 | 0.50 | 0.85 | 1.41 | 0.41 | 0.42 | 0.51 |
Milk | 1.02 | 0.11 | 1.29 | 0.36 | <0.001 | 0.23 | 0.29 | 1.21 | 0.68 | 0.66 | 0.80 |
Fruits | 2.08 | 2.94 | 1.66 | 0.89 | 0.060 | −0.49 | 2.28 | 1.13 | 0.75 | 0.79 | ≠ |
Beverages | 1.08 | 0.28 | 1.60 | 1.19 | <0.001 | 0.55 | 1.05 | 1.47 | 0.65 | 0.85 | 0.90 |
Nutrients (Unit) | Average Daily Intake (Unit/Day) | Level of Agreement | Correlation Coefficient between FD and FFQ * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FD | FFQ | FFQ-FD 1 | FFQ:FD 2 | Unadjusted 3 | Energy-Adjusted 4 | De-attenuated 5 | |||||
Mean | SD | Mean | SD | p-Value 6 | Mean | SD | Pearson | Pearson | Pearson | ||
Protein (g) | 44.1 | 14.6 | 50.8 | 13.1 | <0.001 | 6.8 | 15.5 | 1.26 | 0.36 | 0.51 | 0.58 |
Fat (g) | 23.0 | 12.5 | 21.3 | 8.7 | 0.125 | −1.7 | 13.3 | 1.12 | 0.38 | 0.45 | 0.55 |
Carbohydrate available (g) | 214.6 | 49.8 | 326.7 | 107.8 | <0.001 | 112.1 | 106.2 | 1.56 | 0.25 | 0.54 | 0.63 |
Total dietary fiber (g) | 23.7 | 8.4 | 26.4 | 7.6 | 0.001 | 2.7 | 9.6 | 1.20 | 0.34 | 0.45 | 0.70 |
Ash (g) | 9.2 | 3.0 | 10.4 | 3.0 | <0.001 | 1.2 | 3.9 | 1.23 | 0.19 | 0.20 | 0.31 |
Calcium (mg) | 345.5 | 160.2 | 299.8 | 99.1 | <0.001 | −45.7 | 167.8 | 0.98 | 0.30 | 0.26 | 0.34 |
Iron (mg) | 16.1 | 5.4 | 21.0 | 16.7 | <0.001 | 4.9 | 16.2 | 1.36 | 0.38 | 0.40 | 0.47 |
Magnesium (mg) | 297.1 | 92.2 | 334.8 | 102.3 | <0.001 | 37.7 | 117.6 | 1.20 | 0.32 | 0.37 | 0.68 |
Phosphorus (mg) | 655.1 | 226.0 | 873.7 | 268.9 | <0.001 | 218.7 | 313.6 | 1.46 | 0.30 | 0.33 | 0.39 |
Potassium (mg) | 1346.9 | 463.5 | 1312.9 | 386.9 | 0.438 | −33.9 | 520.5 | 1.07 | 0.32 | 0.45 | 0.53 |
Sodium (mg) | 939.9 | 581.9 | 1033.6 | 785.4 | 0.187 | 93.7 | 939.1 | 1.54 | 0.13 | 0.17 | 0.23 |
Zinc (mg) | 6.9 | 2.3 | 9.4 | 3.0 | <0.001 | 2.5 | 3.3 | 1.46 | 0.30 | 0.36 | 0.87 |
Copper (mg) | 2.5 | 0.7 | 2.7 | 0.5 | 0.002 | 0.2 | 0.7 | 1.14 | 0.21 | 0.23 | 0.29 |
Vitamin A (mcg) | 192.0 | 138.6 | 334.2 | 171.1 | <0.001 | 142.2 | 193.4 | 2.39 | 0.21 | 0.27 | 0.51 |
Retinol (mcg) | 36.1 | 45.0 | 43.5 | 30.3 | 0.017 | 7.4 | 49.9 | 3.96 | 0.17 | 0.28 | 0.37 |
Beta-carotene equivalents (mcg) | 2586.6 | 2594.6 | 3591.8 | 1552.5 | <0.001 | 1005.2 | 2823.7 | 3.31 | 0.15 | 0.20 | 0.27 |
Alpha-carotene (mcg) | 835.4 | 656.4 | 660.3 | 288.8 | <0.001 | −175.1 | 695.0 | 1.85 | 0.13 | 0.22 | 0.29 |
Beta-carotene (mcg) | 1855.1 | 1562.4 | 2972.3 | 1544.2 | <0.001 | 1117.2 | 1922.3 | 2.29 | 0.17 | 0.21 | 0.30 |
Total cryptoxanthin (mcg) | 552.0 | 400.5 | 404.5 | 185.6 | <0.001 | −147.5 | 428.2 | 1.30 | 0.08 | 0.22 | 0.31 |
Vitamin D (mcg) | 2.2 | 1.2 | 1.9 | 0.6 | 0.002 | −0.3 | 1.2 | 1.09 | 0.23 | 0.45 | 0.57 |
Vitamin E (mg) | 2.9 | 1.3 | 3.3 | 0.7 | <0.001 | 0.4 | 1.3 | 1.32 | 0.18 | 0.21 | 0.26 |
Thiamin (mg) | 1.4 | 0.3 | 1.6 | 0.2 | <0.001 | 0.3 | 0.3 | 1.22 | 0.24 | 0.33 | 0.38 |
Riboflavin (mg) | 1.2 | 0.2 | 1.4 | 0.2 | <0.001 | 0.2 | 0.2 | 1.22 | 0.24 | 0.33 | 0.38 |
Niacin equivalents (mg) | 6.4 | 3.3 | 6.3 | 3.1 | 0.761 | −0.1 | 4.0 | 1.26 | 0.28 | 0.30 | 0.36 |
Niacin, preformed (mg) | 7.8 | 2.4 | 11.3 | 2.6 | <0.001 | 3.5 | 3.2 | 1.53 | 0.26 | 0.25 | 0.33 |
Niacin equivalents from tryptophan (mg) | 6.0 | 3.0 | 7.3 | 1.9 | <0.001 | 1.3 | 3.0 | 1.48 | 0.31 | 0.36 | 0.41 |
Vitamin B6 (mg) | 1.6 | 0.4 | 1.9 | 0.3 | <0.001 | 0.3 | 0.4 | 1.25 | 0.30 | 0.38 | 0.49 |
Folate (mcg) | 140.2 | 53.1 | 140.1 | 40.5 | 0.984 | −0.1 | 58.4 | 1.10 | 0.27 | 0.26 | 0.31 |
L-ascorbic acid (mg) | 121.7 | 68.6 | 66.4 | 28.4 | <0.001 | −55.3 | 71.1 | 0.78 | 0.14 | 0.14 | 0.18 |
Intakes | Same Quintile (%) | Adjacent Quintile (%) | One Quintile Apart (%) | Extreme Quintile (%) | Weighted Kappa (95% CI) |
---|---|---|---|---|---|
Food Group | |||||
Grain, Cereal, Bread based | 26.75 | 42.00 | 24.34 | 6.90 | 0.20 (0.14, 0.26) |
Vegetable based | 27.11 | 37.29 | 27.23 | 8.37 | 0.14 (0.08, 0.20) |
Legumes, Pulses, Seeds based | 24.40 | 46.28 | 25.10 | 4.24 | 0.21 (0.15, 0.27) |
Fish, Poultry, Meat, Egg based | 35.27 | 46.60 | 15.17 | 2.96 | 0.41 (0.35, 0.46) |
Milk based | 35.38 | 30.84 | 24.95 | 8.84 | 0.21 (0.11, 0.30) |
Fruits | 37.35 | 32.52 | 23.80 | 6.33 | 0.30 (0.21, 0.40) |
Beverages | 28.51 | 36.69 | 23.60 | 11.21 | 0.07 (0.00, 0.14) |
Nutrient Intake | |||||
Protein (g) | 32.15 | 45.53 | 18.89 | 3.43 | 0.34 (0.28, 0.41) |
Fat (g) | 38.77 | 40.69 | 18.75 | 1.80 | 0.43 (0.38, 0.49) |
Carbohydrate available (g) | 42.83 | 33.45 | 19.48 | 4.23 | 0.40 (0.33, 0.47) |
Total dietary fiber (g) | 33.89 | 44.63 | 20.58 | 0.90 | 0.42 (0.37, 0.47) |
Ash (g) | 30.25 | 37.93 | 25.32 | 6.47 | 0.19 (0.13, 0.25) |
Calcium (mg) | 29.24 | 38.46 | 24.09 | 8.20 | 0.14 (0.08, 0.20) |
Iron (mg) | 27.84 | 42.85 | 23.04 | 6.26 | 0.22 (0.16, 0.28) |
Magnesium (mg) | 27.96 | 42.11 | 22.78 | 7.13 | 0.20 (0.14, 0.26) |
Phosphorus (mg) | 27.12 | 38.18 | 26.12 | 8.58 | 0.12 (0.06, 0.18) |
Potassium (mg) | 28.62 | 44.39 | 23.60 | 3.39 | 0.29 (0.23, 0.34) |
Sodium (mg) | 30.42 | 40.01 | 20.60 | 8.97 | 0.17 (0.10, 0.23) |
Zinc (mg) | 30.40 | 39.58 | 23.76 | 6.28 | 0.20 (0.14, 0.27) |
Copper (mg) | 26.40 | 40.03 | 25.07 | 8.50 | 0.11 (0.04, 0.17) |
Vitamin A (mcg) | 29.62 | 33.46 | 27.18 | 9.74 | 0.09 (0.03, 0.15) |
Retinol (mcg) | 28.39 | 38.18 | 24.46 | 8.97 | 0.13 (0.06, 0.20) |
Beta-carotene equivalents (mcg) | 27.82 | 39.76 | 24.43 | 8.00 | 0.10 (0.03, 0.16) |
Alpha-carotene (mcg) | 27.38 | 44.04 | 24.87 | 3.70 | 0.19 (0.12, 0.25) |
Beta-carotene (mcg) | 27.32 | 38.36 | 25.56 | 8.76 | 0.09 (0.02, 0.15) |
Total Cryptoxanthin (mcg) | 24.30 | 45.61 | 23.83 | 6.27 | 0.15 (0.09, 0.21) |
Vitamin D (mcg) | 35.66 | 38.28 | 22.42 | 3.64 | 0.32 (0.27, 0.37) |
Vitamin E (mg) | 25.16 | 40.04 | 27.03 | 7.76 | 0.10 (0.03, 0.16) |
Thiamin (mg) | 30.94 | 45.62 | 21.09 | 2.34 | 0.32 (0.26, 0.38) |
Riboflavin (mg) | 35.24 | 38.85 | 21.79 | 4.11 | 0.30 (0.24, 0.36) |
Niacin equivalents (mg) | 23.78 | 43.50 | 25.61 | 7.11 | 0.13 (0.07, 0.19) |
Niacin, preformed (mg) | 33.68 | 38.66 | 23.46 | 4.19 | 0.30 (0.23, 0.36) |
Niacin equivalents from tryptophan (mg) | 28.63 | 39.81 | 25.18 | 6.40 | 0.17 (0.11, 0.23) |
Vitamin B6 (mg) | 26.55 | 40.23 | 23.51 | 9.73 | 0.10 (0.04, 0.16) |
Folate (mcg) | 31.57 | 38.17 | 23.76 | 6.49 | 0.19 (0.13, 0.26) |
L-ascorbic acid (mg) | 30.96 | 38.91 | 21.54 | 8.58 | 0.08 (0.04, 0.11) |
Validation Type | Association | Test of Agreement | Presence, Direction and Extent of Bias | |||
---|---|---|---|---|---|---|
Complete Agreement | Size and Direction of Error | Including Chances | Excluding Chances | |||
Statistical Method | Spearman’s Correlation 2 | Paired t-Test (p-Value) | Percent Difference 3 (%) | Cross-Classification (% in Opposite Quintiles) | Weighted Kappa | Bland–Altman Spearman Correlation (p-Value) |
Intake (unit/day) | ||||||
Energy (kcal) | 0.35 ^ | <0.001 | 44.0% | 9.30 | 0.14 | −0.16 (0.040) |
Protein (g) | 0.46 | <0.001 | 15.3% | 3.43 | 0.34 | 0.21 (0.073) |
Fat (g) | 0.45 | <0.001 | −7.2% | 1.80 | 0.43 | 0.24 (0.052) |
Carbohydrate available (g) | 0.50 | <0.001 | 52.2% | 4.23 | 0.40 | −0.32 (<0.001) |
Total dietary fiber (g) | 0.43 | <0.001 | 11.5% | 0.90 | 0.42 | 0.08 (0.332) |
Ash (g) | 0.22 | <0.001 | 12.6% | 6.47 | 0.19 | 0.04 (0.615) |
Calcium (mg) | 0.24 | <0.001 | 13.2% | 8.20 | 0.14 | 0.46 (<0.001) |
Iron (mg) | 0.32 | <0.001 | 30.3% | 6.26 | 0.22 | −0.07 (0.408) |
Magnesium (mg) | 0.30 | <0.001 | 12.7% | 7.13 | 0.20 | 0.17 (0.071) |
Phosphorus (mg) | 0.30 | <0.001 | 33.4% | 8.58 | 0.12 | 0.01 (0.913) |
Potassium (mg) | 0.41 | 0.168 | −2.5% | 3.39 | 0.29 | 0.31 (<0.001) |
Sodium (mg) | 0.17 | <0.001 | 10.0% | 8.97 | 0.17 | −0.15 (0.071) |
Zinc (mg) | 0.37 | <0.001 | 35.9% | 6.28 | 0.20 | 0.10 (0.214) |
Copper (mg) | 0.20 | <0.001 | 8.1% | 8.50 | 0.11 | 0.15 (0.065) |
Vitamin A (mcg) | 0.24 | <0.001 | 74.1% | 9.74 | 0.09 | 0.09 (0.261) |
Retinol (mcg) | 0.26 | 0.686 | 20.5% | 8.97 | 0.13 | 0.07 (0.374) |
Beta–carotene equivalents (mcg) | 0.19 | <0.001 | 38.9% | 8.00 | 0.10 | 0.26 (0.081) |
Alpha-carotene (mcg) | 0.19 | <0.001 | −21.0% | 3.70 | 0.19 | 0.41 (<0.001) |
Beta-carotene (mcg) | 0.15 | <0.001 | 60.2% | 8.76 | 0.09 | 0.22 (0.001) |
Total Cryptoxanthin (mcg) | 0.21 | <0.001 | −26.7% | 6.27 | 0.15 | 0.36 (<0.001) |
Vitamin D (mcg) | 0.41 | <0.001 | −13.5% | 3.64 | 0.32 | 0.52 (0.293) |
Vitamin E (mg) | 0.21 | <0.001 | 15.1% | 7.76 | 0.10 | 0.32 (0.310) |
Thiamin (mg) | 0.28 | <0.001 | 18.4% | 2.34 | 0.32 | 0.08 (0.293) |
Riboflavin (mg) | 0.24 | <0.001 | 19.0% | 4.11 | 0.30 | 0.29 (0.002) |
Niacin equivalents (mg) | 0.22 | 0.463 | −0.8% | 7.11 | 0.13 | 0.44 (<0.001) |
Niacin, preformed (mg) | 0.25 | <0.001 | 44.2% | 4.19 | 0.30 | −0.15 (0.051) |
Niacin equivalents from tryptophan (mg) | 0.24 | <0.001 | 22.3% | 6.40 | 0.17 | 0.29 (0.082) |
Vitamin B6 (mg) | 0.30 | <0.001 | 20.9% | 9.73 | 0.10 | 0.20 (0.051) |
Folate (mcg) | 0.25 | 0.613 | −0.1% | 6.49 | 0.19 | 0.15 (0.063) |
L-ascorbic acid (mg) | 0.17 | <0.001 | –45.4% | 8.58 | 0.08 | 0.66 (<0.001) |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.-I.D.; Bromage, S.; Mostofa, M.G.; Allen, J.; Oken, E.; Kile, M.L.; Christiani, D.C. Validation of a Dish-Based Semiquantitative Food Questionnaire in Rural Bangladesh. Nutrients 2017, 9, 49. https://doi.org/10.3390/nu9010049
Lin P-ID, Bromage S, Mostofa MG, Allen J, Oken E, Kile ML, Christiani DC. Validation of a Dish-Based Semiquantitative Food Questionnaire in Rural Bangladesh. Nutrients. 2017; 9(1):49. https://doi.org/10.3390/nu9010049
Chicago/Turabian StyleLin, Pi-I. D., Sabri Bromage, Md. Golam Mostofa, Joseph Allen, Emily Oken, Molly L. Kile, and David C. Christiani. 2017. "Validation of a Dish-Based Semiquantitative Food Questionnaire in Rural Bangladesh" Nutrients 9, no. 1: 49. https://doi.org/10.3390/nu9010049
APA StyleLin, P. -I. D., Bromage, S., Mostofa, M. G., Allen, J., Oken, E., Kile, M. L., & Christiani, D. C. (2017). Validation of a Dish-Based Semiquantitative Food Questionnaire in Rural Bangladesh. Nutrients, 9(1), 49. https://doi.org/10.3390/nu9010049