Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease
Abstract
:1. Introduction
2. Epidemiological Studies
3. Interventional Studies Involving Soy
3.1. Blood Pressure Lowering Effect of Soy
3.2. Blood Glucose Lowering Effect of Soy
3.3. Non-Protein Effects of Soy on Blood Lipids
3.4. Effects of Soy on Inflammation and Obesity
4. Contribution of Soy Based Foods to Satiety
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AUC | area under the curve |
BMI | body mass index |
cAMP | cyclic adenosine monosphosphate |
CHD | coronary heart disease |
CRP | C-reactive protein |
CVD | cardiovascular disease |
FBG | fasting blood glucose |
HDL-C | high density lipoprotein cholesterol |
HOMA-IR | homeostatic model assessment of insulin resistance |
LDL-C | low density lipoprotein cholesterol |
LDLR | low density lipoprotein cholesterol receptor |
oxLDL | oxidized LDL cholesterol |
MetS | metabolic syndrome |
NO | nitric oxide |
ODMA | O-desmethylangolensin |
PPAR | peroxisome proliferator activated receptor |
PKA | protein kinase A |
RCT | randomized controlled trial |
ROS | reactive oxygen species |
TC | total cholesterol |
TNF-α | tumor necrosis factor alpha |
TG | triglycerides |
References
- World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control: Policies, Strategies and Intervention; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Kannel, W.B. Blood pressure as a cardiovascular risk factor: Prevention and treatment. JAMA 1996, 275, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.C. Hyperglycemia and cardiovascular disease. Curr. Atheroscler. Rep. 2001, 3, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.C.; Lee, R.T. Oxidative stress and atherosclerosis. Curr. Atherscler. Rep. 2005, 7, 242–248. [Google Scholar] [CrossRef]
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food 2013, 16, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Mattson, J.W.; Sun, C.; Koo, W.W. Analysis of the World Oil Crops Market. Available online: http://ageconsearch.umn.edu/handle/23621 (accessed on 3 July 2016).
- Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and edible uses of soy protein products. CRFSFS 2008, 7, 14–28. [Google Scholar] [CrossRef]
- Torres, N.; Torre-Villalvazo, I.; Tovar, A.R. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J. Nutr. Biochem. 2006, 17, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Butteiger, D.N.; Rains, T.M. Effects of soy protein on lipoprotein lipids and fecal bile acid excretion in men and women with moderate hypercholesterolemia. J. Clin. Lipidol. 2010, 4, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Johnston, B.M.; Cook-Newell, M.E. Meta-analysis of the effects of soy-protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Weggemans, R.M.; Trautwein, E.A. Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: A meta-analysis. Eur. J. Clin. Nutr. 2003, 57, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Yueng, J.; Yu, T.F. Effects of isoflavones (soy phyto-estrogens) on serum lipids: A meta-analysis of randomized controlled trials. Nutr. J. 2003, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.-G.; Melby, M.K.; Watanabe, S. Soy isoflavone intake lowers serum LDL cholesterol: A meta-analysis of 8 randomized controlled trials in humans. J. Nutr. 2004, 134, 2395–2400. [Google Scholar] [PubMed]
- Zhan, S.; Ho, S.C. Meta-analysis of the effects of soy-protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 2005, 81, 397–408. [Google Scholar] [PubMed]
- Reynolds, K.; Chin, A.; Lees, K.A.; Nguyen, A.; Bujnowski, D.; He, J. A meta-analysis of the effect of soy protein supplementation on serum lipids. Am. J. Cardiol. 2006, 98, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Taku, K.; Umegaki, K.; Sato, Y.; Taki, Y.; Endoh, K.; Watanabe, S. Soy isoflavones lower serum total and LDL cholesterol in humans: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2007, 85, 1148–1156. [Google Scholar] [PubMed]
- Taku, K.; Umegaki, K.; Ishimi, Y.; Watanabe, S. Effects of extracted soy isoflavones alone on blood total and LDL cholesterol: Meta-analysis of randomized controlled trials. Ther. Clin. Risk Manag. 2008, 4, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Harland, J.I.; Haffner, T.A. Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 2008, 200, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Mirrahimi, A.; Srichaikul, K.; Berryman, C.E.; Wang, L.; Carleton, A.; Abdulnour, S.; Sievenpiper, J.L.; Kendall, C.W.; Kris-Etherton, P.M. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J. Nutr. 2010, 140, 2302S–2311S. [Google Scholar] [CrossRef] [PubMed]
- Benkhedda, K.; Boudrault, C.; Sinclair, S.E.; Marles, R.J.; Xiao, C.W.; Underhill, L. Health Canada’s proposal to accept a health claim about soy products and cholesterol lowering. Int. Food Risk Anal. J. 2014. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Available online: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm064919.htm (accessed on 28 September 2016).
- Health Canada: Summary of Health Canada’s Assessment of a Health Claim about Soy Protein and Cholesterol Lowering. Available online: http://www.hc-sc.gc.ca/fn-an/label-etiquet/claims-reclam/assess-evalu/soy-protein-cholesterol-eng.php (accessed on 28 September 2016).
- European Food Safety Authority. Scientific Opinion on the Substantiation of a Health Claim Related to Isolated Soy Protein and Reduction of Blood LDL-Cholesterol Concentrations Pursuant to Article 14 of Regulation (EC) No 1924/2006. Available online: http://www.efsa.europa.eu/en/efsajournal/pub/2555 (accessed on 29 January 2017).
- Dixit, A.K.; Antony, J.I.X.; Sharma, N.K.; Tiwari, R.K. Soybean Constituents and Their Functional Benefits. Opportunity. Available online: http://www.trnres.com/ebook/uploads/tiwari/T_1302158885Tiwari-12.pdf (accessed on 10 January 2017).
- McCue, P.; Kalidas, S. Health benefits of soy isoflavonoids and strategies for enhancement: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Hu, X.; Gao, J.; Zhang, Q.; Fu, Y.; Li, K.; Zhu, S.; Li, D. Soy fiber improves weight loss and lipid profile in overweight and obese adults: A randomized controlled trial. Mol. Nutr. Food Res. 2013, 57, 2147–2154. [Google Scholar] [CrossRef] [PubMed]
- McGraw, N.J.; Krul, E.S.; Grunz-Borgmann, E.; Parrish, A.R. Soy-based renoprotection. World J. Nephrol. 2016, 5, 233–257. [Google Scholar] [CrossRef] [PubMed]
- Omoni, A.O.; Aluko, R.E. Soybean foods and their benefits: Potential mechanisms of action. Nutr. Rev. 2005, 63, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, C.M.; Friedman, E.E.; Powers, L.J.; Arroyave, W.D.; He, J.; Kelly, T.N. Systematic reviews and meta- and pooled analyses dietary protein intake and blood pressure: A meta-analysis of randomized controlled trials. Am. J. Epidemiol. 2012, 176, S27–S43. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.; Prasain, J.; D’Alessandro, T.; Arabshahi, A.; Botting, N.; Lila, M.A.; Jackson, G.; Janle, E.M.; Weaver, C.M. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct. 2011, 2, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Baber, R.J. Phytoestrogens in health: The role of isoflavones. In Isoflavones: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; RSC Publishing: Cambridge, UK, 2011. [Google Scholar]
- Shimazu, T.; Kuriyama, S.; Hozawa, A.; Ohmori, K.; Sato, Y.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. Int. J. Epidemiol. 2007, 36, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Wada, K.; Tamura, T.; Konishi, K.; Goto, Y.; Koda, S.; Kawachi, T.; Tsuji, M.; Nakamura, K. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: The Takayama study. Am. J. Clin. Nutr. 2016, 105, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Reinwald, S.; Akabas, S.R.; Weaver, C.M. Whole versus the piecemeal approach to evaluating soy. J. Nutr. 2010, 140, 2335S–2343S. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.R.; Clerici, C. Equol: History, chemistry, and formation. J. Nutr. 2010, 140, 1355S–1362S. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Liu, J.; Woo, J. Cardiovascular risks in relation to daidzein metabolizing phenotypes among Chinese postmenopausal women. PLoS ONE 2014, 9, e87861. [Google Scholar] [CrossRef] [PubMed]
- Vedrine, N.; Mathey, J.; Morand, C.; Brandolini, M.; Davicco, M.-J.; Guy, L.; Remesy, C.; Coxam, V.; Manach, C. One-month exposure to soy isoflavones did not induce the ability to produce equol in postmenopausal women. Eur. J. Clin. Nutr. 2006, 60, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Vergne, S.; Sauvant, P.; Lamothe, V.; Chantre, P. Influence of ethnic origin (Asian v. Caucasian) and background diet on the bioavailability of dietary isoflavones. Br. J. Nutr. 2009, 102, 1642–1653. [Google Scholar] [CrossRef] [PubMed]
- Yamori, Y. Worldwide epidemic of obesity: Hope for Japanese diets. Clin. Exp. Pharmacol. Physiol. 2004, 31, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Shu, X.O.; Chow, W.H.; Xiang, Y.B.; Zhang, X.; Li, H.L.; Cai, Q.; Ji, B.; Cai, H.; Rothman, N.; et al. Soy food intake and circulating levels of inflammatory markers in Chinese women. J. Acad. Nutr. Diet. 2013, 112, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Borgi, L.; Muraki, I.; Satija, A.; Willett, W.C.; Rimm, E.B.; Forman, J.P. Fruit and vegetable consumption and the incidence of hypertension in three prospective cohort studies. Hypertension 2016, 67, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Golzarand, M.; Bahadoran, Z.; Mirmiran, P.; Sadeghian-Sharif, S.; Azizi, F. Dietary phytochemical index is inversely associated with the occurrence of hypertension in adults: A 3-year follow-up (the Tehran Lipid and Glucose Study). Eur. J. Clin. Nutr. 2015, 69, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, Y.; Morimoto, A.; Deura, K.; Mizuno, S.; Ohno, Y.; Watanabe, S. Effects of soybean product intake on fasting and postload hyperglycemia and type 2 diabetes in Japanese men with high body mass index: The Saku Study. J. Diabetes Investig. 2013, 4, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Mizoue, T.; Takahashi, Y.; Kirii, K.; Inoue, M.; Noda, M.; Tsugane, S. Soy product and isoflavone intakes are associated with a lower risk of type 2 diabetes in overweight Japanese women. J. Nutr. 2010, 140, 580–586. [Google Scholar] [PubMed]
- Mueller, N.T.; Odegaard, A.O.; Gross, M.D.; Koh, W.P.; Mimi, C.Y.; Yuan, J.M.; Pereira, M.A. Soy intake and risk of type 2 diabetes mellitus in Chinese Singaporeans. Eur. J. Nutr. 2012, 51, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Pan, A.; Manson, J.E.; Willett, W.C.; Malik, V.; Rosner, B.; Giovannucci, E.; Hu, F.B.; Sun, Q. Consumption of soy foods and isoflavones and risk of type 2 diabetes: A pooled analysis of three US cohorts. Eur. J. Clin. Nutr. 2016, 70, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Steinbrehcer, A.; Kolonel, L.; Maskarinec, G. Soy consumption is not protective against diabetes in Hawaii: The multiethnic cohort. Eur. J. Clin. Nutr. 2011, 65, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Li, Y.; Yan, G.; Bu, J.; Wang, H. Soy consumption with risk of coronary heart disease and stroke: A meta-analysis of observational studies. Neuroepidemiology 2016, 46, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Pujol, T.J.; Tucker, J.E. Diseases of the cardiovascular system. In Nutrition Therapy and Pathophysiology; Nelms, M., Sucher, K., Long, S., Eds.; Thomson Brooks/Cole: Belmont, CA, USA, 2007; pp. 371–415. [Google Scholar]
- Tanira, M.O.; Al Balushi, K.A. Genetic variations related to hypertension: A review. J. Hum. Hypertens. 2005, 19, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.L.; Greiwe, J.S.; Schwen, R.J. Emerging evidence of the health benefits of S-equol, an estrogen receptor β-agonist. Nutr. Rev. 2011, 69, 432–448. [Google Scholar] [CrossRef] [PubMed]
- Colacurci, N.; Chiantera, A.; Fornaro, F.; de Novellis, V.; Manzella, D.; Arciello, A.; Chiantera, V.; Improta, L.; Paolisso, G. Effects of soy isoflavones on endothelial function in healthy postmenopausal women. Menopause 2005, 12, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Patten, G.S.; Abeywardena, M.Y.; Bennett, L.E. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking, and blood pressure lowering bioactivity across plant families. Crit. Rev. Food Sci. Nutr. 2016, 56, 181–214. [Google Scholar] [CrossRef] [PubMed]
- Taku, K.; Lin, N.; Cai, D.; Hu, J.; Zhao, X.; Zhang, Y.; Wang, P.; Melby, M.K.; Hooper, L.; Kurzer, M.S.; et al. Effects of soy isoflavone extract supplements on blood pressure in adult humans: Systematic review and meta-analysis of randomized placebo-controlled trials. J. Hypertens. 2010, 28, 1971–1982. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Li, S.H.; Chen, J.Z.; Sun, K.; Wang, X.J.; Wang, X.G.; Hui, R.T. Effect of soy isoflavones on blood pressure: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Garcia Garcia, M.A.; Arenas, R.; Martinez, C.A.; Perez, L.L. Usefulness of phytoestrogens in treatment of arterial hypertension: Systematic review and meta-analysis. Arch. Clin. Hypertens. 2016, 1, 29–34. [Google Scholar]
- Hügel, H.M.; Jackson, N.; May, B.; Zhang, A.L.; Xue, C.C. Polyphenol protection and treatment of hypertension. Phytomedicine 2016, 23, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Hazim, S.; Curtis, P.J.; Schär, M.Y.; Ostertag, L.M.; Kay, C.D.; Minihane, A.-M.; Cassidy, A. Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Acharjee, S.; Zhou, J.; Elajami, T.K.; Welty, F.K. Effect of soy nuts and equol status on blood pressure, lipids and inflammation in postmenopausal women stratified by metabolic syndrome status. Metabolism 2015, 64, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ho, S.C.; Chen, Y.; Tomlinson, B.; Ho, S.; To, K.; Woo, J. Effect of whole soy and purified daidzein on ambulatory blood pressure and endothelial function—A 6-month double-blind, randomized controlled trial among Chinese postmenopausal women with prehypertension. Eur. J. Clin. Nutr. 2015, 69, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Nishibori, N.; Kishibuchi, R.; Morita, K. Soy pulp extract inhibits angiotensin I-converting enzyme (ACE) activity in vitro: Evidence for its potential hypertension-improving action. J. Diet. Suppl. 2017, 14, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Van der Kuil, W.A.; Engberink, M.F.; Brink, E.J.; van Baak, M.A.; Bakker, S.J.L.; Navis, G.; van’t Veer, P.; Geleijnse, J.M. Dietary protein and blood pressure: A systematic review. PLoS ONE 2010, 5, e12102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Ho, S.C.; Chen, Y.M.; Woo, J. Effect of soy protein and isoflavones on blood pressure and endothelial cytokines: A 6-month randomized controlled trial among postmenopausal women. J. Hypertens. 2013, 31, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Welty, F.K.; Lee, K.S.; Lew, N.S.; Zhou, J.R. Effect of soy nuts on blood pressure and lipid levels in hypertensive, prehypertensive, and normotensive postmenopausal women. Arch. Intern. Med. 2007, 167, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct. 2015, 6, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvadó, J.; Guasch-Ferré, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.S.; Entezari, M.H.; Iraj, B.; Gholamreza, A.; Zahabi, E.S.; Maracy, M.R. The effects of soy bean flour enriched bread intake on anthropometric indices and blood pressure in type 2 diabetic women: A crossover randomized controlled clinical trial. Int. J. Endocrinol. 2014, 2014, 240760. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Njike, V.Y.; Hoxley, M.; Pearson, M.; Katz, D.L. Effect of soy isoflavone protein and soy lecithin on endothelial function in healthy postmenopausal women. Menopause 2007, 14, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012. [Google Scholar] [PubMed]
- Dong, J.-Y.; Qin, L.-Q.; Zhang, Z.; Zhao, Y.; Wang, J.; Arigoni, F.; Zhang, W. Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. Am. Heart J. 2011, 162, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Sun, L.; Yang, T.; Sun, K.; Chen, J.; Hui, R. Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: Meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2009, 89, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Vasdev, S.; Gill, V. The antihypertensive effect of arginine. Int. J. Angiol. 2008, 17, 7–22. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture Agricultural Research Service: USDA Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 1 March 2017).
- Sarwar, G.; McDonough, F.E. Evaluation of protein digestibility-corrected amino acid score method for assessing protein quality of foods. J. Assoc. Off. Anal. Chem. 1990, 73, 347–356. [Google Scholar] [PubMed]
- Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: Criteria for evaluation. J. Agric. Food Chem. 2011, 59, 12707–12712. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, S.; Venkatachalam, M.; Mistry, A.M.; Lapsley, K.; Sathe, S.K. Almond (Prunus dulcis L.) protein quality. Plant Foods Hum. Nutr. 2005, 60, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Falvo, M.J. Protein- which is best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar] [PubMed]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Younis, N.; Charlton-Menys, V.; Sharma, R.; Soran, H.; Durrington, P.N. Glycation of LDL in non-diabetic people: Small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis 2009, 202, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, S.; Li, L.; Liang, Z.; Wang, L. Genistein reduces hyperglycemia and islet cell loss in a high-dosage manner in rats with alloxan-induced pancreatic damage. Pancreas 2011, 40, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Gilbert, E.R.; Pfeiffer, L.; Zhang, Y.; Fu, Y.; Liu, D. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl. Physiol. Nutr. Metab. 2012, 37, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Harini, R.; Ezhumalai, M.; Pugalendi, K.V. Antihyperglycemic effect of biochanin A, a soy isoflavone, on streptozotocin-diabetic rats. Eur. J. Pharmacol. 2012, 676, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Liu, D. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying effects on pancreatic β-cell function. Food Funct. 2013, 4, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Ademiluyi, A.O.; Oboh, G. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol. 2013, 65, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the metabolic syndrome: Results of a randomized clinical trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.C.; Chen, Y.M.; Ho, S.S.; Woo, J.L. Soy isoflavone supplementation and fasting serum glucose and lipid profile among postmenopausal Chinese women: A double-blind, randomized, placebo-controlled trial. Menopause 2007, 14, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Atteritano, M.; Marini, H.; Minutoli, L.; Polito, F.; Bitto, A.; Altavilla, D.; Mazzaferro, S.; D’Anna, R.; Cannata, M.L.; Gaudio, A.; et al. Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: A two-year randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2007, 92, 3068–3075. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Chen, Y.M.; Ho, S.C.; Ho, Y.P.; Woo, J. Effects of soy protein and isoflavones on glycemic control and insulin sensitivity: A 6-month, randomized, placebo-controlled trial in postmenopausal Chinese women with prediabetes or untreated early diabetes. Am. J. Clin. Nutr. 2010, 91, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.B.; Chen, A.L.; Lu, W.; Zhuo, S.Y.; Liu, J.; Guan, J.H.; Deng, W.P.; Fang, S.; Li, Y.B.; Chen, Y.M. Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: A double-blind, randomized, placebo-controlled trial. Mol. Nutr. Food Res. 2015, 59, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Cipriani, S.; Chiaffarino, F.; Malvezzi, M.; Parazzini, F. Effects of soy isoflavones and genistein on glucose metabolism in perimenopausal and postmenopausal non-Asian women: A meta-analysis of randomized controlled trials. Menopause 2010, 17, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Dong, H.; Wang, D.; Gong, J.; Huang, W.; Lu, F. Soy isoflavones and glucose metabolism in menopausal women: A systematic review and meta-analysis of randomized controlled trials. Mol. Nutr. Food Res. 2016, 60, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Chi, M. Soy protein supplementation reduces clinical indices in type 2 diabetes and metabolic syndrome. Yonsei Med. J. 2016, 57, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Chen, Y.M.; Ho, S.C. Effects of soy intake on glycemic control: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2011, 93, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiary, A.; Yassin, Z.; Hanachi, P.; Rahmat, A.; Ahmad, Z.; Halalkhor, S.; Firouzjahi, A.R. Evaluation of the Oxidative Stress and Glycemic Control Status in Response to Soy in Older Women with the Metabolic Syndrome. Iran. Red Crescent Med. J. 2011, 13, 795–804. [Google Scholar]
- Azadbakht, L.; Kimiagar, M.; Mehrabi, Y.; Esmaillzadeh, A.; Padyab, M.; Hu, F.B.; Willett, W.C. Soy inclusion in the diet improves features of the metabolic syndrome: A randomized crossover study in postmenopausal. Am. J. Clin. Nutr. 2007, 85, 735–741. [Google Scholar] [PubMed]
- Urita, Y.; Noda, T.; Watanabe, D.; Iwashita, S.O.H.; Hamada, K.; Sugimoto, M. Effects of a soybean nutrition bar on the postprandial blood glucose and lipid levels in patients with diabetes mellitus. Int. J. Food Sci. Nutr. 2012, 63, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Oku, T.; Nakamura, M.; Takasugi, A. Effects of cake made from whole soy powder on postprandial blood glucose and insulin levels in human subjects. Int. J. Food Sci. Nutr. 2009, 60, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, X.L.; Wan, Z.; Zou, Y.; Cheng, F.F.; Yang, X.Q. The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls. Food Funct. 2016, 7, 4830–4840. [Google Scholar] [CrossRef] [PubMed]
- Au, M.M.C.; Goff, D.; Kisch, J.A.; Coulson, A.; Wright, A.J. Effects of soy-soluble fiber and flaxseed gum on the glycemic and insulinemic responses to glucose solutions and dairy products in healthy adult males. J. Am. Coll. Nutr. 2013, 32, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Tokede, O.A.; Onabanjo, T.A.; Yansane, A.; Gaziano, J.M.; Djoussé, L. Soya products and serum lipids: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2015, 114, 831–943. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Galluzzo, P.; Ascenzi, P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genom. 2006, 7, 497–508. [Google Scholar] [CrossRef]
- Ricketts, M.-L.; Moore, D.D.; Banz, W.J.; Mezei, O.; Shay, N.F. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. J. Nutr. Biochem. 2005, 16, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Engelbert, A.K.; Soukup, S.T.; Roth, A.; Hoffmann, N.; Graf, D.; Watzl, B.; Kulling, S.E.; Bub, A. Isoflavone supplementation in postmenopausal women does not affect leukocyte LDL receptor and scavenger receptor CD36 expression: A double-blind, randomized, placebo-controlled trial. Mol. Nutr. Food Res. 2016, 60, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.; Baron, T.; Wolffram, S.; Minihane, A.M.; Cassidy, A.; Rimbach, G.; Weinberg, P.D. Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein. Free Radic. Res. 2004, 38, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.W.; Wood, C.M.; Weber, D.; Aziz, S.A.; Mehta, R.; Griffin, P.; Cockell, K.A. Dietary supplementation with soy isoflavones or replacement with soy proteins prevents hepatic lipid droplet accumulation and alters expression of genes involved in lipid metabolism in rats. Genes Nutr. 2014, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Egusa, S.; Fukuda, M. Isoflavone and protein constituents of lactic acid-fermented soy milk combine to prevent dyslipidemia in rats fed a high cholesterol diet. Nutrients 2014, 6, 5704–5723. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Xu, T.C.; Yu, Y.H.; Huang, T.; Hu, X.J.; Li, D. Systematic review and meta-analysis of soy products consumption in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr. 2011, 20, 593–602. [Google Scholar] [PubMed]
- Huang, H.; Xie, Z.; Boue, S.M.; Bhatnagar, D.; Yokoyama, W.; Yu, L.; Wang, T.T.Y. CZolesterol-lowering activity of soy-derived glyceollins in the golden Syrian hamster model. J. Agric. Food Chem. 2013, 61, 5772–5782. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Yamasaki, S.; Torisu, N.; Suzuki, T.; Shimamoto, S.; Tamaru, S.; Tanaka, K. Okara, a by-product of tofu manufacturing, modifies triglyceride metabolism at the intestinal and hepatic levels. J. Nutr. Sci. Vitaminol. 2016, 62, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A. Fat lowers fat: Purified phospholipids as emerging therapies for dyslipidemia. Biochem. Biophys. Acta-Mol. Cell Biol. Lipids 2013, 1831, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, L.; Ebbesen, K.; Olesen, E.S. The Effects of oral soybean phospholipid on serum total cholesterol, plasma triglyceride, and serum high-density lipoprotein cholesterol concentrations in hyperlipidemia. J. Parent. Enter. Nutr. 1985, 9, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Spilburg, F.; Goldberg, A.C.; McGill, J.B.; Stenson, W.F.; Racette, S.B.; Bateman, J.; McPherson, T.B.; Ostlun, R.E., Jr. Fat-free foods supplemented with soy stanol-lecithin powder reduce cholesterol absorption and LDL cholesterol. J. Am. Diet. Assoc. 2003, 103, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Høie, L.H.; Morgenstern, E.C.; Gruenwald, J.; Graubaum, H.J.; Busch, R.; Lüder, W.; Zunft, H.J. A double-blind placebo-controlled clinical trial compares the cholesterol-lowering effects of two different soy protein preparations in hypercholesterolemic subjects. Eur. J. Nutr. 2005, 44, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Lukaczer, D.; Liska, D.J.; Lerman, R.H.; Darland, G.; Schilz, B.; Tripp, M.; Bland, J.S. Effect of a low glycemic index diet with soy protein and phytosterols on CVD risk factors in postmenopausal women. Nutrition 2006, 22, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhang, R.; Ji, Y.; Hao, J.Y.; Ma, W.W.; Chen, X.D.; Xiao, R.; Yu, H.L. Soy milk powder supplemented with phytosterol esters reduced serum cholesterol level in hypercholesterolemia independently of lipoprotein E genotype: A random clinical placebo-controlled trial. Nutr. Res. 2016, 36, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Butteiger, D.N.; Hibberd, A.A.; McGraw, N.J.; Napawan, N.; Hall-Porter, J.M.; Krul, E.S. Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in golden Syrian hamsters. J. Nutr. 2016, 146, 697–705. [Google Scholar]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [PubMed]
- Han, S.; Wu, H.; Li, W.; Gao, P. Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Mol. Cell. Biochem. 2015, 403, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Montes, E.; Pollard, S.E.; Vauzour, D.; Jofre-Montseny, L.; Rota, C.; Rimbach, G.; Weinberg, P.D.; Spencer, J.P.E. Activation of glutathione peroxidase via Nrf1 mediates genistein’s protection against oxidative endothelial cell injury. Biochem. Biophys. Res. Commun. 2006, 346, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Kanatsu, J.; Toh, M.; Naka, A.; Kondo, K.; Iida, K. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPARα/γ and JNK pathways in adipocyte and macrophage co-cultures. PLoS ONE 2016, 11, e0149676. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, G.B.; Reville, P.K.; Mace, T.A.; Young, G.S.; Ahn-Jarvis, J.; Thomas-Ahner, J.; Vodovotz, Y.; Ameen, Z.; Grainger, E.; Riedl, K.; et al. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev. Res. 2015, 8, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.F.; Ryan, M.F.; Gibney, E.R.; Brennan, L.; Roche, H.M.; Reilly, M.P. Dietary isoflavone intake is associated with evoked responses to inflammatory cardiometabolic stimuli and improved glucose homeostasis in healthy volunteers. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Llaneza, P.; González, C.; Fernandez-Iñarrea, J.; Alonso, A.; Diaz, F.; Arnott, I.; Ferrer-Barriendos, J. Soy isoflavones, diet and physical exercise modify serum cytokines in healthy obese postmenopausal women. Phytomedicine 2011, 18, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Atabak, S.; Esmaillzadeh, A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes. Diabetes Care 2008, 31, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Tomayko, E.J.; Kistler, B.M.; Fitschen, P.J.; Wilund, K.R. Intradialytic protein supplementation reduces inflammation and improves physical function in maintenance hemodialysis patients. J. Ren. Nutr. 2015, 25, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Reverri, E.J.; LaSalle, C.D.; Franke, A.A.; Steinberg, F.M. Soy provides modest benefits on endothelial function without affecting inflammatory biomarkers in adults at cardiometabolic risk. Mol. Nutr. Food Res. 2015, 59, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takasawa, M.; Kashara, S.; Tsuda, A.; Momotsu, T.; Ito, S.; Shibata, A. Effects of acute protein loads of different sources on renal function of patients with diabetic nephropathy. Tohoku J. Exp. Med. 1989, 159, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Mauriz, J.L.; Matilla, B.; Culebras, J.M.; Gonzalez, P.; Gonzalez-Gallego, J. Dietary glycine inhibits activation of nuclear factor kappa B and prevents liver injury in hemorrhagic shock in the rat. Free Radic. Biol. Med. 2001, 31, 1236–1244. [Google Scholar] [CrossRef]
- DeBoer, M.D. Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: A need for screening tools to target interventions. Nutrition 2013, 29, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Chaiswing, L.; Cole, M.P.; St. Clair, D.K.; Ittarat, W.; Szweda, L.I.; Oberley, T.D. Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicol. Pathol. 2004, 32, 536–547. [Google Scholar] [PubMed]
- Kurrat, A.; Blei, T.; Kluxen, F.M.; Mueller, D.R.; Piechotta, M.; Soukup, S.T.; Kulling, S.E.; Diel, P. Lifelong exposure to dietary isoflavones reduces risk of obesity in ovariectomized Wistar rats. Mol. Nutr. Food Res. 2015, 59, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Pang, D.; Luo, Q.; Chen, X.; Gao, Q.; Shi, L.; Liu, W.; Zou, Y.; Li, L.; Chen, Z. Soy Isoflavones regulate lipid metabolism through an AKT/mTORC1 pathway in diet-induced obesity (DIO) male rats. Molecules 2016, 21, 586. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, F.; Xiong, X.; Kong, X.; Zhang, B.; Yuan, X.; Fan, J.; Duan, Y.; Geng, M.; Li, L.; et al. Soy isoflavones modulate adipokines and myokines to regulate lipid metabolism in adipose tissue, skeletal muscle and liver of male Huanjiang mini-pigs. Mol. Cell. Endocrinol. 2013, 365, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V.; Sekhon-Loodu, S.; Mantso, T.; Panayiotidis, M.I. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol. Ther. 2016, 165, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Zanella, I.; Marrazzo, E.; Biasiotto, G.; Penza, M.; Romani, A.; Vignolini, P.; Caimi, L.; Di Lorenzo, D. Soy and the soy isoflavone genistein promote adipose tissue development in male mice on a low-fat diet. Eur. J. Nutr. 2015, 54, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Giordano, E.; Dávalos, A.; Crespo, M.C.; Tomé-Carneiro, J.; Gómez-Coronado, D.; ViZioli, F. Soy isoflavones in nutritionally relevant amounts have varied nutrigenomic effects on adipose tissue. Molecules 2015, 20, 2310–2322. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-G.; Kang, Y.-R.; Lee, H.-Y.; Kim, J.-H.; Shin, E.-H.; Lee, B.-G.; Park, S.-H.; Moon, D.-I.; Kim, O.-J.; Lee, I.-A.; et al. Ameliorative effects of Monascus pilosus-fermented black soybean (Glycine max L. Merrill) on high-fat diet-induced obesity. J. Med. Food 2014, 17, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Oka, J.; Tabata, I.; Higuchi, M.; Toda, T.; Fuku, N.; Ezaki, J.; Sugiyama, F.; Uchiyama, S.; Yamada, K.; et al. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: A 1-year randomized placebo-controlled trial. J. Bone Miner. Res. 2006, 21, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Matvienko, O.A.; Alekel, D.L.; Genschel, U.; Ritland, L.; Van Loan, M.D.; Koehler, K.J. Appetitive hormones, but not isoflavone tablets, influence overall and central adiposity in healthy postmenopausal women. Menopause 2010, 17, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Frankenfeld, C.L.; Atkinson, C.; Wähälä, K.; Lampe, J.W. Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein. Eur. J. Clin. Nutr. 2014, 68, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Kani, A.H.; Alavian, S.M.; Esmaillzadeh, A.; Adibi, P.; Azadbakht, L. Effects of a novel therapeutic diet on liver enzymes and coagulating factors in patients with non-alcoholic fatty liver disease: A parallel randomized trial. Nutrition 2014, 30, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Suga, Y.; Tanabe, K.; Kim, J.; Sato, H.; Iwashita, S.; Hamada, K.; Kuno, S. A comparison of the influences of soy- vs. wheat-based supplements on weight loss in middle-aged subjects. Int. J. Sport Health Sci. 2013, 11, 10–19. [Google Scholar] [CrossRef]
- Beavers, K.M.; Gordon, M.M.; Easter, L.; Beavers, D.P.; Hairston, K.G.; Nicklas, B.J.; Vitolins, M.Z. Effect of protein source during weight loss on body composition, cardiometabolic risk and physical performance in abdominally obese, older adults: A pilot feeding study. J. Nutr. Health Aging 2015, 19, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Takahira, M.; Noda, K.; Fukushima, M.; Zhang, B.; Mitsutake, R.; Uehara, Y.; Ogawa, M.; Kakuma, T.; Saku, K. Randomized, double-blind, controlled, comparative trial of formula food containing soy protein vs. milk protein in visceral fat obesity. Circ. J. 2011, 75, 2235–2243. [Google Scholar] [PubMed]
- Kok, L.; Kreijkamp-Kaspers, S.; Grobbee, D.E.; Lampe, J.W.; van der Schouw, Y.T. Soy isoflavones, body composition, and physical performance. Maturitas 2005, 16, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Ahn, C.W.; Park, S.H.; Jung, S.U.; Min, B.J.; Kim, O.Y.; Lee, J.H. Weight reduction effects of a black soy peptide supplement in overweight and obese subjects: Double blind, randomized, controlled study. Food Funct. 2012, 3, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Koohkan, S.; Schaffner, D.; Milliron, B.J.; Frey, I.; König, D.; Deibert, P.; Vitolins, M.; Berg, A. The impact of a weight reduction program with and without meal-replacement on health related quality of life in middle-aged obese females. BMC Womens Health 2014, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Reimann, M.; Otto, B.; Hall, W.L.; Vafeiadou, K.; Hallund, J.; Ferrari, M.; Talbot, D.; Branca, F.; Bügel, S.; et al. Soy isoflavones increase preprandial peptide YY (PYY), but have no effect on ghrelin and body weight in healthy postmenopausal women. J. Negat. Results Biomed. 2006, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Simmons, A.L.; Miller, C.K.; Clinton, S.K.; Vodovot, Y. A comparison of satiety, glycemic index, and insulinemic index of wheat-derived soft pretzels with or without soy. Food Funct. 2011, 2, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Douglas, S.M.; Lasley, T.R.; Leidy, H.J. Consuming beef vs. soy protein has little effect on appetite, satiety, and food intake in healthy Adults. J. Nutr. 2015, 145, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Neacsu, M.; Fyfe, C.; Horgan, G.; Johnstone, A.M. Appetite control and biomarkers of satiety with vegetarian (soy) and meat-based high-protein diets for weight loss in obese men: A randomized crossover trial. Am. J. Clin. Nutr. 2014, 100, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Tahavorgar, A.; Vafa, M.; Shidfar, F.; Gohari, M.; Heydari, I. Whey protein preloads are more beneficial than soy protein preloads in regulating appetite, calorie intake, anthropometry, and body composition of overweight and obese men. Nutr. Res. 2014, 34, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Padhi, E.M.T.; Ramdath, D.D.; Carson, S.J.; Hawke, A.; Blewett, H.J.; Wolever, T.M.S.; Vella, D.; Seetharaman, K.; Duizer, L.M.; Duncan, A.M. Liking of soy flour muffins over time and the impact of a health claim on willingness to consume. Food Res. Int. 2015, 77, 491–497. [Google Scholar] [CrossRef]
- Leidy, H.J.; Todd, C.B.; Zino, A.Z.; Immel, J.E.; Mukherjea, R.; Shafer, R.S.; Ortinau, L.C.; Braun, M. Consuming high-protein soy snacks affects appetite control, satiety, and diet quality in young people and influences select aspects of mood and cognition. J. Nutr. 2015, 145, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- König, D.; Muser, K.; Berg, A.; Deibert, P. Fuel selection and appetite-regulating hormones after intake of a soy protein-based meal replacement. Nutrition 2012, 28, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Liu, H.; Rahardjo, G.L.; Mclennan, P.L.; Tapsell, L.C.; Buttemer, W.A. Effects of diets high in whey, soy, red meat and milk protein on body weight maintenance in diet-induced obesity in mice. Nutr. Diet. 2008, 65, S53–S59. [Google Scholar] [CrossRef]
Food | Arginine | Lysine | PDCAAS 2 |
---|---|---|---|
Soy protein isolate | 6670 | 5327 | 1.00 |
Peanuts, dry-roasted | 2832 | 850 | 0.52 |
Almonds, dry-roasted | 2444 | 563 | 0.23 |
Black beans, boiled | 549 | 608 | 0.75 |
Milk, 2% (cow) | 94 | 276 | 1.00 |
Egg, hard-boiled | 755 | 904 | 1.00 |
Beef, chuck, braised | 2054 | 2748 | 0.92 |
Study | Sample Size & Population | Duration | Treatment | Dose; Format | Results | Conclusions |
---|---|---|---|---|---|---|
[89] | 389 osteopenic postmenopausal women | 2 years, parallel RCT | Genistein extract with calcium and Vitamin D3 supplement compared to placebo | Purified supplement (54 mg/day) | Significant reductions in FBG, insulin, HOMA-IR, fibrinogen, F2-isoprostanes, soluble intercellular adhesion molecule-1, and soluble vascular cellular adhesion molecule-1 | Genistein supplements improve markers of glycemic control and other markers of CVD risk |
[97] | 42 postmenopausal women with MetS | 8 weeks, randomized crossover trial | Control diet (Dietary Approaches to Stop Hypertension, DASH); DASH diet with red meat replaced with soy nuts; DASH diet with red meat replaced with soy protein | 30 g soy nut = 1 serving read meat; 30 g soy protein = 1 serving red meat. Normal diet for 3 weeks followed by all 3 diets for 8 weeks each, with 4-week washout period in between each diet | Soy nuts reduced HOMA-IR and fasting plasma glucose more than soy protein (p < 0.01 for both factors) and control (p < 0.01 for both factors) | Soy nuts have greater role in attenuating blood glucose response markers compared to soy protein in postmenopausal women with MetS |
[96] | 75 women with MetS, age 60–70 | 12 weeks, parallel RCT | Soy nuts; textured soy protein (TSP) | 35 g/day soy nut; 35 g/day textured soy protein | Compared to control, serum FBG, HOMA-IR and insulin were lower in soy-nut group (p < 0.05, p < 0.1, p < 0.05) and the mean changes were higher in soy nut group vs. TSP (p < 0.001) | Soy nut leads to greater reductions in markers of glycemic control than soy protein |
[88] | 203 postmenopausal women, age 48–62. | 1 year parallel RCT | Calcium tablet with isoflavones | 40 or 80 mg isoflavones/day compared to calcium with 0 mg isoflavones | Both treatment groups significantly lowered FBG. No dose-response effect. No effect on lipids | Isoflavone supplementation favourably influences FBG in postmenopausal women |
[90] | 180 postmenopausal women with hyperglycemia | 6 months parallel RCT | Soy protein isolate with or without isoflavone conjugates | 15 g soy protein and 100 mg isoflavones, 15 g milk protein and 100 mg isoflavones, or 15 g milk protein | No significant improvements in fasting and 2-h postload glucose, fasting and postload insulin, glycated serum protein, HOMA-IR. and beta-cell function | Soy protein isolate with or without isoflavones does not improve glycemic control and insulin sensitivity |
[99] | 20 healthy males and females | 1 day; within-subject design with 1 week intervals in between interventions | Intervention (1) Bar-type cake made of whole soy powder; (2) cooked paddy-rice; (3) cooked paddy rice with whole soy powder cake | 114 g whole soy powder cake containing 50 g carbohydrates, 144 g cooked paddy-rice containing 50 g carbohydrates; 144 g cooked paddy-rice with 60 g whole soy powder sake | (1) Blood glucose and insulin levels were lower than control (2) Blood was lower, while insulin levels were increased slightly | Postprandial blood glucose and insulin response may be improved with whole soy powder food; beneficial effects of combining soy products with carbohydrate-rich foods are less clear |
[87] | 120 postmenopausal women with Metabolic Syndrome (60 received treatment; 60 received placebo) | 1 year, randomized, double-blind, placebo-controlled trial | Genistein | 54 mg/day in 2 tablets | Fasting blood glucose, fasting insulin and HOMA-IR were significantly decreased in the treatment group (p < 0.001) | Soy isoflavone, genistein, significantly lowers hyperglycemia and reduces insulin resistance |
[98] | 10 type 2 diabetes patients in the 80 kcal meal tolerance test (Study 1); 11 diabetic patients in the 592 kcal meal tolerance test (Study 2) | 1 day, crossover study | Soybean nutrition bar | Study 1: 1 soybean nutrition bar containing 7.0 g carbohydrates, 4.3 g fat, 1.9 g fiber, 2.7 g protein, 8.2 mg isoflavones Study 2: 4.3 soybean nutrition bars, each containing 50.9 g carbohydrates, 31.3 g fat, 14.4 g fiber, 19.6 g protein, 14 mg isoflavones | Blood glucose was lower in both studies with the soybean nutrition bar intervention (p < 0.001); Insulin AUC was lower than the control in study 2 only; no significant changes in blood TGs and non-esterified fatty acids between treatment and control groups in either study | Soybean nutrition bars may have a role in preventing postprandial hyperglycemia in patients with type 2 diabetes compared to isocaloric cookies |
[91] | 165 women with impaired glucose regulation, aged 30–70 | 24 week parallel RCT | Soy protein with or without daidzein or genistein extract | 10 g soy protein without isoflavones, or with 50 mg daidzein, or 50 mg genistein | No significant changes in FBG, 2-h glucose, HbA1c, fasting, and 2-h insulin, AUC of glucose and insulin. | Purified extracts of daidzein and genistein do not improve glycemic control and insulin sensitivity |
Study | Sample Size & Population | Duration | Treatment | Dose; Format | Results | Conclusions |
---|---|---|---|---|---|---|
[146] | 25 abdominally obese men and women | 12 weeks, parallel RCT | Soy protein meal replacement | 4 replacement meals/day: 44 g soy protein, 60–135 mg isoflavones/day | No significant variations in body composition (including weight, BMI, % fat and % lean mass) or cardiometabolic risk factors were observed in the soy replacement meal compared to control | Soy protein affects weight loss to same extent as other proteins |
[28] | 39 overweight and obese adults | Daily breakfast for 12 weeks | Soy fiber supplemented biscuits | 100 g soy fiber/day | LDL-C, TC and BMI decreased after 12 weeks (p < 0.05) | Soy fiber supplementation may help in weight management and lowering cholesterol levels |
[144] | 45 patients with non-alcoholic fatty liver disease | 8 weeks, parallel RCT | 3 diets: low-calorie; low- calorie, low carbohydrate; low-calorie, low soy diet | 30 g soy nuts containing: 7 g fat, 9 g fiber, 11.3 g protein, 10 mg sodium, 102 mg phytoestrogens | Soy group had greatest decline in serum liver enzymes and fibrinogens, and malondialdehyde. There were no changes in BMI or weight between the two groups | Soy may mitigate inflammation when combined with a low-calorie diet, but may not affect weight loss in those with non-alcoholic fatty liver disease. |
[158] | 11 overweight and obese men | 1 day, parallel RCT | Soy protein breakfast meal replacement, followed by standardized lunch 4 h later | Meal replacement, containing 28.7 soy protein (34.6 g total protein), 19.8 g carbohydrate | Meal replacement group had lower glucose levels, glucose and insulin AUC, ghrelin concentrations following breakfast; Fat oxidation was lower after lunch | Soy protein could have a potential hypoglycemic effect, as well as mediating metabolic risk factors and improving weight management |
[150] | 380 women, BMI of 30–40 kg/m2, 76 of whom took the soy meal replacement | 12 months, with meal replacement taken for a maximum of 3 months (most did so during first 3 months of study) | Soy-based meal replacement (in addition to baseline lifestyle program administered to both control and treated groups) | Soy-yogurt-honey product: 83% soy-protein isolate, 17% milk protein | Weight loss was greater in meal replacement group (p = 0.1); health-related quality of life scores also increased more compared to control | Soy protein consumption may enhance weight loss when combined with a lifestyle intervention program focusing on diet and physical activity |
[149] | 64 overweight/obese subjects | 12 weeks, parallel RCT | Black soy peptide (BSP) supplementation | 4.5 g/day in tablet form | After 12 weeks, BSP group had statistically significant decrease in body weight, body fat mass, body fat % and plasma leptin (vs. no change in placebo); no change in inflammatory markers or lipid profiles between groups | Black soy peptide seems to have a role in weight and fat mass regulation in overweight subjects, perhaps by altering leptin levels |
[156] | 116 healthy men and women | 6 weeks, parallel RCT | Soy muffins (vs. control wheat muffins) | 12.5 g soy protein muffin; 2 muffins/day | Higher fullness scores in soy muffin group on a Visual Analog Scale (p = 0.002) vs. control group | Replacing wheat flour with soy flour may increase perceived satiety |
[145] | 38 obese men and women | 8 weeks, parallel RCT | Whole soy powder bar (vs. wheat control) | 1 bar eaten 1–2 h before dinner daily | Compared to control, soy group had lower BMI, waist circumference and body fat % (p < 0.05). No significant differences in weight loss, TC, LDL = C, or insulin were found between the two groups | Whole soy can complement the benefits of a weight-loss program; whether it does so by mediating glycemic response remains unclear based on this study. |
[147] | 48 obese Japanese adults | 20 weeks, parallel RCT | Soy protein | Soy protein intervention containing 12 g soy protein, 9 g milk protein; consumed at breakfast | Visceral and subcutaneous fat, body weight and BMI decreased significantly after 20 weeks of milk protein ingestion, but not after ingestion of soy protein containing milk protein | Milk protein has a more substantial impact on markers of weight loss compared to a combination of milk and soy protein |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramdath, D.D.; Padhi, E.M.T.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017, 9, 324. https://doi.org/10.3390/nu9040324
Ramdath DD, Padhi EMT, Sarfaraz S, Renwick S, Duncan AM. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients. 2017; 9(4):324. https://doi.org/10.3390/nu9040324
Chicago/Turabian StyleRamdath, D. Dan, Emily M. T. Padhi, Sidra Sarfaraz, Simone Renwick, and Alison M. Duncan. 2017. "Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease" Nutrients 9, no. 4: 324. https://doi.org/10.3390/nu9040324
APA StyleRamdath, D. D., Padhi, E. M. T., Sarfaraz, S., Renwick, S., & Duncan, A. M. (2017). Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients, 9(4), 324. https://doi.org/10.3390/nu9040324