The Consumption of Dairy Products Is Associated with Reduced Risks of Obesity and Metabolic Syndrome in Korean Women but not in Men
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Participants
2.2. Dietary Assessment
2.3. Obesity and MetS
2.4. Potential Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Casavale, K.O.; Reedy, J.; Kirkpatrick, S.I.; Hiza, H.A.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. 2013, 113, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans, 2010, 7th ed.; US Government Printing Office: Washington, DC, USA, 2010.
- Food and Agriculture Organization of the United Nations. FAOSTAT. 2016. Available online: http://faostat.fao.org/site/610/DesktopDefault.aspx?PageID=610#ancor (assessed on 20 November 2016).
- Ministry of Health and Welfare; Korea Centers for Disease Control and Prevention. 2009 Korea National Health and Nutrition Examination Survey; Korea Centers for Disease Control and Prevention: Cheongwon, Korea, 2010.
- Choi, H.S.; Oh, H.J.; Choi, H.; Choi, W.H.; Kim, J.G.; Kim, K.M.; Kim, K.J.; Rhee, Y.; Lim, S.-K. Vitamin D insufficiency in Korea—A greater threat to younger generation: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J. Clin. Endocrinol. Metab. 2010, 96, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Kim, E.-K.; Lee, J.-S. Effects of calcium intake, milk and dairy product intake, and blood vitamin D level on osteoporosis risk in Korean adults: Analysis of the 2008 and 2009 Korea National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2013, 7, 409–417. [Google Scholar] [CrossRef] [PubMed]
- The Korean Nutrition Society; Ministry of Health and Welfare. 2010 Dietary Reference Intakes for Koreans: Essential Guidebook; Korean Nutrition Society: Seoul, Korea, 2013.
- Kweon, S. Intakes of calcium and dairy products in Korea National Health and Nutrition Examination Survey. Public Health Wkly. Rep. 2013, 6, 821–827. [Google Scholar]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Dairy consumption in association with weight change and risk of becoming overweight or obese in middle-aged and older women: A prospective cohort study. Am. J. Clin. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Gary, T.L.; Caballero, B.H.; Lawrence, R.S.; Cheskin, L.J.; Wang, Y. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 1914–1925. [Google Scholar] [PubMed]
- Akter, S.; Kurotani, K.; Nanri, A.; Pham, N.M.; Sato, M.; Hayabuchi, H.; Mizoue, T. Dairy consumption is associated with decreased insulin resistance among the Japanese. Nutr. Res. 2013, 33, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kirii, K.; Mizoue, T.; Iso, H.; Takahashi, Y.; Kato, M.; Inoue, M.; Noda, M.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 2009, 52, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Zong, G.; Sun, Q.; Yu, D.; Zhu, J.; Sun, L.; Ye, X.; Li, H.; Jin, Q.; Zheng, H.; Hu, F.B. Dairy consumption, type 2 diabetes and changes in cardiometabolic traits-a prospective cohort study of middle-aged and older Chinese in Beijing and Shanghai. Diabetes Care 2014, 37, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Cho, J.-I.; Lee, H.-S.H.; Kim, C.-I.; Cho, E. Intakes of dairy products and calcium and obesity in Korean adults: Korean National Health and Nutrition Examination Surveys (KNHANES) 2007–2009. PLoS ONE 2014, 9, e99085. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.T.; Lee, C.M.; Park, J.H.; Ko, J.A.; Seong, E.J.; Park, M.S.; Cho, B. Milk intake and its association with metabolic syndrome in Korean: Analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). J. Korean Med. Sci. 2010, 25, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Yoon, J.W.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K. Increasing prevalence of metabolic syndrome in Korea: The Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.S.; Kim, K.M. Association between healthy diet and exercise and greater muscle mass in older adults. J. Am. Geriatr. Soc. 2015, 63, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Im, M.Y.; Seomun, G.A. Gender disparity in the prevalence of metabolic syndrome in Korea: Results from the Korea National Health and Nutrition Examination Survey, 2012. Diabetes Metab. J. 2015, 6, 485. [Google Scholar]
- Korea Centers for Disease Control and Prevention. User Guide for the Fourth Korea National Health and Nutrition Examination Survey (KNHANES V); Korea Centers for Disease Control and Prevention: Cheongwon, Korea, 2016.
- Ministry of Health and Welfare; Korea Centers for Disease Control and Prevention. Korea Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3); Korea Centers for Disease Control and Prevention: Cheongwon, Korea, 2013.
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Im, J.G.; Kim, S.H.; Lee, G.-Y.; Joung, H.; Park, M.-J. Inadequate calcium intake is highly prevalent in Korean children and adolescents: The Korea National Health and Nutrition Examination Survey (KNHANES) 2007–2010. Public Health Nutr. 2014, 17, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; Kac, G.; Silva, R.A.; Bettiol, H.; Barbieri, M.A.; Cardoso, V.C.; Silva, A.A. Dairy consumption is associated with a lower prevalence of metabolic syndrome among young adults from Ribeirao Preto, Brazil. Nutrition 2015, 31, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K.; Graubard, B.I. Energy density of diets reported by American adults: Association with food group intake, nutrient intake, and body weight. Int. J. Obes. 2005, 29, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Regional Office for the Western Pacific Region; International Association for the Study of Obesity; International Obesity Task Force. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; 0957708211; Health Communications Australia: Sydney, Australia, 2000. [Google Scholar]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult treatment panel III). Circulation 2002, 106, 3143–3421. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Institute of Medicine of the National Academies. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Cho, Y.A.; Kim, J.; Cho, E.R.; Shin, A. Dietary patterns and the prevalence of metabolic syndrome in Korean women. Nutri. Metab. Cardiovas. 2011, 21, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Nasreddine, L.; Itani, L.; Chamieh, M.C.; Adra, N.; Sibai, A.M.; Hwalla, N. Dietary patterns and their association with obesity and sociodemographic factors in a national sample of Lebanese adults. Public Health Nutr. 2011, 14, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Noguchi, T.; Naito, H. Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. J. Nutr. Sci. Vitaminol. 1986, 32, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B. Diet and lifestyle recommendations revision 2006. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Song, Y.; Lee, K.H.; Lee, H.S.; Lee, M.; Jee, S.H.; Joung, H. A fruit and dairy dietary pattern is associated with a reduced risk of metabolic syndrome. Metabolism 2012, 61, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Paik, H.-Y.; Song, Y. High intake of whole grains and beans pattern is inversely associated with insulin resistance in healthy Korean adult population. Diabetes Res. Clin. Pract. 2012, 98, e28–e31. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Song, W.O.; Cho, M.S. Dietary quality differs by consumption of meals prepared at home vs. outside in Korean adults. Nutr. Res. Pract. 2016, 10, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Cho, M.S. The traditional Korean dietary pattern is associated with decreased risk of metabolic syndrome: Findings from the Korean National Health and Nutrition Examination Survey, 1998–2009. J. Med. Food 2014, 17, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Joung, H. A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br. J. Nutr. 2013, 110, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jo, I. Grains, vegetables, and fish dietary pattern is inversely associated with the risk of metabolic syndrome in South Korean adults. J. Am. Diet. Assoc. 2011, 111, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Elwood, P.C.; Pickering, J.E.; Fehily, A.M. Milk and dairy consumption, diabetes and the metabolic syndrome: The Caerphilly prospective study. J. Epidemiol. Community Health 2007, 61, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Pan, A.; Malik, V.S.; Hu, F.B. Effects of dairy intake on body weight and fat: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dairy consumption and body mass index: An inverse relationship. Int. J. Obes. 2005, 29, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Vaskonen, T. Dietary minerals and modification of cardiovascular risk factors. J. Nutr. Biochem. 2003, 14, 492–506. [Google Scholar] [CrossRef]
- Zemel, M.B. Regulation of adiposity and obesity risk by dietary calcium: Mechanisms and implications. J. Am. Coll. Nutr. 2002, 21, 146S–151S. [Google Scholar] [CrossRef] [PubMed]
- Wylie-Rosett, J. Dairy products and metabolic risk factors: How much do we know? Diabetes Care 2011, 34, 1064–1065. [Google Scholar] [CrossRef] [PubMed]
- Lanou, A.J.; Barnard, N.D. Dairy and weight loss hypothesis: An evaluation of the clinical trials. Nutr. Rev. 2008, 66, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Berkey, C.S.; Rockett, H.R.; Willett, W.C.; Colditz, G.A. Milk, dairy fat, dietary calcium, and weight gain: A longitudinal study of adolescents. Arch. Pediatr. Adolesc. Med. 2005, 159, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Major, G.C.; Alarie, F.P.; Doré, J.; Tremblay, A. Calcium plus vitamin D supplementation and fat mass loss in female very low-calcium consumers: Potential link with a calcium-specific appetite control. Br. J. Nutr. 2008, 101, 659–663. [Google Scholar] [CrossRef]
- Vergnaud, A.-C.; Péneau, S.; Chat-Yung, S.; Kesse, E.; Czernichow, S.; Galan, P.; Hercberg, S.; Bertrais, S. Dairy consumption and 6-y changes in body weight and waist circumference in middle-aged French adults. Am. J. Clin. Nutr. 2008, 88, 1248–1255. [Google Scholar] [PubMed]
- O’Connor, L.M.; Lentjes, M.A.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. Dietary dairy product intake and incident type 2 diabetes: A prospective study using dietary data from a 7-day food diary. Diabetologia 2014, 57, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Willett, W.C.; Stampfer, M.J.; Rimm, E.; Hu, F.B. Dairy consumption and risk of type 2 diabetes mellitus in men: A prospective study. Arch. Intern. Med. 2005, 165, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.; Egert, S.; Heer, M. Effects of whey protein supplements on metabolism: Evidence from human intervention studies. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.; Gunnerud, U.; Muhammed, S.J.; Östman, E.; Holst, J.J.; Björck, I.; Rorsman, P. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and gip on β-cells. Nutr. Metab. 2012, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Howe, P.R.; Buckley, J.D.; Coates, A.M.; Murphy, K.J. Dairy consumption and cardiometabolic health: Outcomes of a 12-month crossover trial. Nutr. Metab. 2012, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Zozaya, C.; Vázquez, Z.; Alfredo Martinez, J.; Martínez-González, M. The effect of low-fat versus whole-fat dairy product intake on blood pressure and weight in young normotensive adults. J. Hum. Nutr. Diet. 2009, 22, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Manson, J.E.; Buring, J.E.; Lee, I.-M.; Sesso, H.D. Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension 2008, 51, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Ruidavets, J.-B.; Bongard, V.; Simon, C.; Dallongeville, J.; Ducimetière, P.; Arveiler, D.; Amouyel, P.; Bingham, A.; Ferrières, J. Independent contribution of dairy products and calcium intake to blood pressure variations at a population level. J. Hypertens. 2006, 24, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B. Calcium modulation of hypertension and obesity: Mechanisms and implications. J. Am. Coll. Nutr. 2001, 20, 428S–435S. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, R.J.; Meisel, H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 2000, 84, 33–37. [Google Scholar] [CrossRef]
- Brown, N.J.; Vaughan, D.E. Angiotensin-converting enzyme inhibitors. Circulation 1998, 97, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Zabetakis, I. Invited review: The anti-inflammatory properties of dairy lipids. J. Dairy Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.Q.; Le, T.T.; Van de Walle, D.; Van der Meeren, P.; Dewettinck, K. Combined effects of milk fat globule membrane polar lipids and protein concentrate on the stability of oil-in-water emulsions. Int. Dairy J. 2016, 52, 42–49. [Google Scholar] [CrossRef]
- Tsorotioti, S.; Nasopoulou, C.; Detopoulou, M.; Sioriki, E.; Demopoulos, C.; Zabetakis, I. In vitro anti-atherogenic properties of traditional Greek cheese lipid fractions. Dairy Sci. Technol. 2014, 94, 269–281. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Possemiers, S.; Verstraete, W.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin–glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem. 2012, 23, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Mennen, L.I.; Lafay, L.; Feskens, E.J.; Novak, M.; Lépinay, P.; Balkau, B. Possible protective effect of bread and dairy products on the risk of the metabolic syndrome. Nutr. Res. 2000, 20, 335–347. [Google Scholar] [CrossRef]
- Dugan, C.E.; Barona, J.; Fernandez, M.L. Increased dairy consumption differentially improves metabolic syndrome markers in male and female adults. Metab. Syndr. Relat. Disord. 2014, 12, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.D.; Cho, B.; Lee, W.C.; Lee, H.W.; Lee, H.K.; Oh, B.J. Obesity explains gender differences in the association between education level and metabolic syndrome in South Korea: The results from the Korean National Health and Nutrition Examination Survey 2010. Asia Pac. J. Public Health 2015, 27, NP630–NP639. [Google Scholar] [CrossRef] [PubMed]
- Loucks, E.B.; Rehkopf, D.H.; Thurston, R.C.; Kawachi, I. Socioeconomic disparities in metabolic syndrome differ by gender: Evidence from NHANES III. Ann. Epidemiol. 2007, 17, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [PubMed]
- Inglis, V.; Ball, K.; Crawford, D. Why do women of low socioeconomic status have poorer dietary behaviours than women of higher socioeconomic status? A qualitative exploration. Appetite 2005, 45, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical methods for estimating usual intake of nutrients and foods: A review of the theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
Total | Dairy Product Consumption (Servings/Day) | p Value | |||
---|---|---|---|---|---|
0 | 0< to <1 | ≥1 | |||
n (Wt’d % 2) | n (Wt’d %) | n (Wt’d %) | n (Wt’d %) | ||
Total | 13,692 (100.00) | 8079 (59.01) | 2079 (15.18) | 3534 (25.81) | |
Sex | |||||
Men | 5375 (50.98) | 3479 (54.47) | 644 (42.61) | 1252 (47.69) | <0.0001 **,3 |
Women | 8317 (49.02) | 4600 (45.53) | 1435 (57.39) | 2282 (52.31) | |
Age (year) | |||||
20–29 | 1863 (20.95) | 913 (17.86) | 314 (22.93) | 636 (26.90) | <0.0001 ** |
30–49 | 6736 (50.61) | 3814 (49.98) | 1130 (53.63) | 1792 (50.36) | |
50–64 | 5093 (28.44) | 3352 (32.16) | 635 (23.44) | 1106 (22.74) | |
Income | |||||
Lowest | 3192 (25.58) | 2045 (27.48) | 431 (22.14) | 716 (23.20) | 0.0007 ** |
Lower middle | 3503 (25.93) | 2020 (25.11) | 568 (27.38) | 915 (26.99) | |
Upper middle | 3482 (24.88) | 2052 (24.71) | 524 (25.14) | 906 (25.13) | |
Highest | 3515 (23.60) | 1962 (22.70) | 556 (25.33) | 997 (24.68) | |
Education level | |||||
≤Middle school | 3089 (18.67) | 2183 (22.48) | 345 (13.69) | 561 (12.76) | <0.0001 ** |
High school | 5336 (42.38) | 3170 (42.68) | 772 (40.25) | 1394 (42.88) | |
≥College | 5267 (38.95) | 2726 (34.84) | 962 (46.06) | 1579 (44.35) | |
Smoking | |||||
No (non-/former smoker) | 10,860 (72.95) | 6202 (69.70) | 1722 (76.82) | 2936 (78.21) | <0.0001 ** |
Yes (current smoker) | 2832 (27.05) | 1877 (30.30) | 357 (23.18) | 598 (21.79) | |
Alcohol consumption | |||||
Never/rarely | 5925 (38.17) | 3334 (36.21) | 980 (41.26) | 1611 (40.92) | <0.0001 ** |
1–4/month | 4932 (38.12) | 2834 (37.20) | 751 (38.19) | 1347 (40.19) | |
≥2/week | 2835 (23.71) | 1911 (26.59) | 348 (20.54) | 576 (18.89) | |
Regular physical activity 4 | |||||
Yes | 6380 (48.39) | 3674 (47.32) | 920 (46.42) | 1786 (51.96) | 0.0001 ** |
No | 7312 (51.61) | 4405 (52.68) | 1159 (53.58) | 1748 (48.04) | |
Vitamin D status 5 | |||||
Deficient | 4044 (29.83) | 2346 (29.22) | 670 (31.81) | 1028 (30.10) | 0.0676 |
Inadequate | 6547 (47.42) | 3834 (47.21) | 996 (48.12) | 1717 (47.50) | |
Adequate | 3101 (22.75) | 1899 (23.57) | 413 (20.07) | 789 (22.39) |
Men (n = 5375) | Women (n = 8317) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dairy Product Consumption (Servings/Day) | p Value | Dairy Product Consumption (Servings/Day) | p Value | ||||||
KDRI 2 | 0 (n = 3479) | 0< to <1 (n = 644) | ≥1 (n = 1252) | 0 (n = 4600) | 0< to <1 (n = 1435) | ≥1 (n = 2282) | |||
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | ||||
Total energy (kcal) | 2362.3 ± 19.0 3 | 2352.8 ± 36.5 | 2539.2 ± 29.3 | <0.0001 **,4 | 1738.4 ± 23.1 | 1799.2 ± 26.6 | 1919.9 ± 27.2 | <0.0001 ** | |
Carbohydrate (g) | 357.77 ± 2.93 | 368.27 ± 5.98 | 381.73 ± 4.35 | <0.0001 ** | 274.81 ± 3.54 | 281.02 ± 4.19 | 297.09 ± 4.58 | <0.0001 ** | |
Carbohydrate (% of energy) | 55–70% | 62.59 ± 0.29 | 63.48 ± 0.57 | 61.44 ± 0.40 | 0.0043 ** | 65.02 ± 0.45 | 63.87 ± 0.52 | 62.97 ± 0.48 | <0.0001 ** |
Protein (g) | 85.02 ± 0.96 | 82.95 ± 1.84 | 91.48 ± 1.33 | <0.0001 ** | 62.73 ± 1.15 | 64.42 ± 1.28 | 70.02 ± 1.25 | <0.0001 ** | |
Protein (% of energy) | 7–20% | 14.27 ± 0.09 | 14.06 ± 0.19 | 14.36 ± 0.13 | 0.3828 | 14.30 ± 0.14 | 14.24 ± 0.17 | 14.50 ± 0.14 | 0.1212 |
Fat (g) | 48.06 ± 0.72 | 49.10 ± 1.37 | 59.81 ± 1.17 | <0.0001 ** | 37.08 ± 1.01 | 39.72 ± 1.11 | 45.34 ± 1.08 | <0.0001 ** | |
Fat (% of energy) | 15–25% | 17.60 ± 0.17 | 18.42 ± 0.35 | 20.53 ± 0.26 | <0.0001 ** | 18.19 ± 0.29 | 19.22 ± 0.35 | 20.58 ± 0.32 | <0.0001 ** |
Dietary fiber (g) 5 | M: 25 g, W: 21 g | 12.56 ±0.23 | 12.52 ± 0.43 | 12.35 ± 0.35 | 0.8570 | 10.85 ± 0.28 | 10.95 ± 0.34 | 10.47 ± 0.31 | 0.2271 |
Sodium (mg) 5 | 1100–1500 mg | 5948.3 ± 66.9 | 5681.3 ± 121.6 | 5403.6 ± 90.8 | <0.0001 ** | 4273.4 ± 76.6 | 4198.8 ± 112.3 | 3856.5 ± 88.7 | <0.0001 ** |
Potassium (mg) 5 | 3493.0 ± 26.8 | 3496.7 ± 46.8 | 3628.7 ± 33.4 | 0.0022 ** | 2763.8 ± 32.5 | 2764.8 ± 39.0 | 2918.2 ± 35.9 | <0.0001 ** | |
Phosphorous (mg) 5 | 1346.8 ± 7.2 | 1365.9 ± 14.2 | 1481.8 ± 10.9 | <0.0001 ** | 1000.2 ± 8.6 | 1028.9 ± 10.5 | 1139.2 ± 9.6 | <0.0001 ** | |
Calcium (mg) 5 | 700–750 mg | 513.61 ± 6.05 | 556.61 ± 10.11 | 778.92 ± 10.18 | <0.0001 ** | 393.84 ± 6.38 | 456.75 ± 8.47 | 649.8 ± 9.21 | <0.0001 ** |
Calcium from dairy products (mg) 5 | 0.11 ± 0.85 | 73.48 ± 3.27 | 312.57 ± 6.88 | <0.0001 ** | 1.51 ± 2.38 | 85.36 ± 3.55 | 307.29 ± 5.45 | <0.0001 ** | |
Calcium from non-dairy products (mg) 5 | 513.73 ± 5.97 | 483.06 ± 9.59 | 466.34 ± 7.80 | <0.0001 ** | 392.33 ± 5.97 | 371.39 ± 7.82 | 342.52 ± 7.74 | <0.0001 ** |
Men (n = 5375) | Women (n = 8317) | |||||||
---|---|---|---|---|---|---|---|---|
Dairy Product Consumption (Servings/Day) | p Value | Dairy Product Consumption (Servings/Day) | p Value | |||||
0 (n = 3479) | 0< to <1 (n = 644) | ≥1 (n = 1252) | 0 (n = 4600) | 0< to <1 (n = 1435) | ≥1 (n = 2282) | |||
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | |||
Whole grains (g/day) | 28.10 ± 1.36 2 | 31.89 ± 2.72 | 28.56 ± 1.81 | 0.4256 | 23.50 ± 1.27 | 24.06 ± 1.88 | 25.34 ± 1.82 | 0.6292 |
White rice and refined grains (g/day) | 239.65 ± 2.50 | 225.31 ± 5.21 | 210.76 ± 3.82 | <0.0001 **,3 | 166.59 ± 2.81 | 151.17 ± 3.71 | 141.66 ± 3.44 | <0.0001 ** |
Noodles, dumplings, and instant ramen (g/day) | 46.69 ± 1.86 | 51.70 ± 3.96 | 46.00 ± 2.94 | 0.4411 | 39.75 ± 2.17 | 39.37 ± 2.98 | 33.92 ± 2.39 | 0.0502 |
Flour, breads, cakes, and cookies (g/day) | 26.48 ± 1.40 | 35.61 ± 2.38 | 45.79 ± 2.41 | <0.0001 ** | 25.35 ± 1.88 | 32.21 ± 2.32 | 33.21 ± 2.09 | <0.0001 ** |
Burgers, pizza, and sandwiches (g/day) | 4.47 ± 0.74 | 6.52 ± 2.19 | 5.13 ± 1.60 | 0.6686 | 5.45 ± 1.34 | 4.18 ± 1.52 | 5.20 ± 1.84 | 0.4898 |
Starchy vegetables (g/day) | 34.76 ± 2.44 | 38.73 ± 4.00 | 36.73 ± 3.07 | 0.5771 | 34.73 ± 3.49 | 36.42 ± 3.59 | 37.49 ± 3.65 | 0.6676 |
Other vegetables (g/day) | 410.75 ± 4.88 | 407.02 ± 9.79 | 368.77 ± 7.92 | <0.0001 ** | 319.16 ± 5.71 | 329.12 ± 7.88 | 281.79 ± 6.73 | <0.0001 ** |
Fruits (g/day) | 161.32 ± 6.73 | 161.95 ± 9.90 | 154.70 ± 8.79 | 0.7873 | 177.85 ± 9.08 | 167.08 ± 9.68 | 176.30 ± 9.49 | 0.5074 |
Meat/poultry (g/day) | 150.43 ± 5.66 | 126.60 ± 8.42 | 118.86 ± 6.40 | 0.0005 ** | 107.92 ± 7.03 | 95.44 ± 10.48 | 80.54 ± 7.26 | <0.0001 ** |
Fish and Shellfish (g/day) | 100.35 ± 3.12 | 86.28 ± 4.63 | 78.81 ± 3.77 | <0.0001 ** | 72.47 ± 3.09 | 68.51 ± 3.79 | 61.08 ± 3.35 | 0.0006 ** |
Eggs (g/day) | 30.31 ± 1.09 | 33.46 ± 2.26 | 30.98 ± 1.93 | 0.4257 | 21.83 ± 1.17 | 24.56 ± 1.77 | 23.24 ± 1.32 | 0.1887 |
Legumes (g/day) | 34.79 ± 1.43 | 33.81 ± 3.13 | 32.98 ± 1.99 | 0.7325 | 24.16 ± 1.36 | 20.70 ± 1.77 | 23.11 ± 1.62 | 0.0942 |
Nuts and seeds (g/day) | 6.88 ± 1.13 | 4.35 ± 0.67 | 4.52 ± 0.70 | 0.2107 | 4.46 ± 0.51 | 3.90 ± 0.65 | 5.33 ± 0.77 | 0.3755 |
Sugars and sweets (g/day) | 11.69 ± 0.41 | 14.95 ± 1.03 | 13.18 ± 0.89 | 0.0058 ** | 8.70 ± 0.51 | 8.98 ± 0.71 | 8.30 ± 0.72 | 0.5768 |
Oils and fats (g/day) | 11.16 ± 0.25 | 11.18 ± 0.54 | 9.77 ± 0.39 | 0.0052 ** | 7.81 ± 0.29 | 7.81 ± 0.38 | 6.54 ± 0.35 | <0.0001 ** |
Others (g/day) | 76.60 ± 1.54 | 70.11 ± 3.02 | 69.83 ± 2.49 | 0.0512 | 67.09 ± 10.87 | 63.50 ± 8.83 | 57.09 ± 8.54 | 0.0634 |
Dairy products (g/day) | 0.58 ± 0.78 | 77.56 ± 2.77 | 317.67 ± 6.14 | <0.0001 ** | 1.63 ± 2.23 | 81.89 ± 3.08 | 297.00 ± 4.64 | <0.0001 ** |
Whole-fat milk (g/day) | −0.51 ± 0.82 | 32.38 ± 2.97 | 186.21 ± 7.27 | <0.0001 ** | 1.54 ± 2.10 | 42.02 ± 3.07 | 168.30 ± 5.05 | <0.0001 ** |
Reduced fat (2%)/low-fat (1%) milk (g/day) | −0.18 ± 0.51 | 3.65 ± 1.28 | 25.27 ± 3.23 | <0.0001 ** | −0.63 ± 0.97 | 6.12 ± 1.57 | 28.12 ± 2.23 | <0.0001 ** |
Sweetened milk (g/day) | 0.54 ± 0.42 | 1.49 ± 0.81 | 27.80 ± 2.99 | <0.0001 ** | −0.96 ± 0.96 | −0.84 ± 1.04 | 15.21 ± 1.92 | <0.0001 ** |
Yogurt (g/day) | 0.03 ± 0.36 | 20.33 ± 1.91 | 49.65 ± 3.12 | <0.0001 ** | 2.41 ± 1.96 | 20.15 ± 2.32 | 66.45 ± 4.13 | <0.0001 ** |
Cheese/cheese products (g/day) | −0.03 ± 0.29 | 2.35 ± 0.44 | 1.64 ± 0.45 | <0.0001 ** | 0.11 ± 0.15 | 2.26 ± 0.24 | 2.17 ± 0.28 | <0.0001 ** |
Ice cream/dairy-based desserts (g/day) | 0.44 ± 0.33 | 17.32 ± 1.68 | 26.91 ± 2.59 | <0.0001 ** | −1.00 ± 0.71 | 11.71 ± 1.22 | 16.70 ± 1.43 | <0.0001 ** |
Non-alcoholic beverages (g/day) | 151.75 ± 6.84 | 167.63 ± 13.72 | 130.58 ± 8.75 | 0.0346 * | 124.01 ± 9.79 | 128.45 ± 11.87 | 126.17 ± 14.39 | 0.8505 |
Alcoholic beverages (g/day) | 266.89 ± 9.71 | 191.07 ± 17.27 | 149.66 ± 12.70 | <0.0001 ** | 154.80 ± 12.29 | 160.64 ± 13.88 | 126.27 ± 11.34 | <0.0001 ** |
Total (n = 13,692) | Dairy Product Consumption (Servings/Day) | p Value | |||
---|---|---|---|---|---|
0 (n = 8079) | 0< to <1 (n = 2079) | ≥1 (n = 3534) | |||
n (Wt’d %) | n (Wt’d %) | n (Wt’d %) | n (Wt’d %) | ||
Men | |||||
n | 5375 | 3479 | 644 | 1252 | |
Obesity 2 | 2060 (37.90) 3 | 1361 (38.65) | 219 (33.65) | 480 (38.10) | 0.1078 |
MetS 2 | 1426 (23.51) | 982 (25.23) | 152 (21.06) | 292 (20.25) | 0.0011 **,4 |
Abdominal obesity 2 | 1349 (24.13) | 919 (25.38) | 148 (21.60) | 282 (22.11) | 0.0487 * |
Lowered HDL-C 2 | 1462 (25.64) | 927 (25.68) | 190 (26.81) | 345 (24.96) | 0.7144 |
Elevated TG 2 | 2287 (39.73) | 1552 (41.79) | 273 (40.85) | 462 (33.79) | <0.0001 ** |
Elevated FBG 2 | 1793 (29.09) | 1245 (31.53) | 189 (24.17) | 359 (25.18) | <0.0001 ** |
Elevated BP 2 | 1856 (30.78) | 1283 (20.84) | 195 (28.45) | 378 (26.64) | 0.0012 ** |
Women | |||||
N | 8317 | 4600 | 1435 | 2282 | |
Obesity 2 | 2194 (25.85) | 1372 (28.89) | 325 (23.17) | 497 (21.45) | <0.0001 ** |
MetS 2 | 1792 (19.73) | 1195 (23.76) | 246 (16.02) | 351 (13.98) | <0.0001 ** |
Abdominal obesity 2 | 2896 (33.23) | 1816 (37.88) | 431 (29.16) | 649 (26.47) | <0.0001 ** |
Lowered HDL-C 2 | 3465 (40.54) | 2017 (43.05) | 589 (40.06) | 859 (35.82) | <0.0001 ** |
Elevated TG 2 | 1978 (21.85) | 1212 (24.29) | 303 (19.42) | 463 (18.50) | <0.0001 ** |
Elevated FBG 2 | 1579 (17.78) | 1018 (20.78) | 212 (13.77) | 349 (14.29) | <0.0001 ** |
Elevated BP 2 | 1732 (17.98) | 1115 (20.99) | 247 (14.91) | 370 (13.89) | <0.0001 ** |
Men (n = 5375) | Women (n = 8317) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dairy Product Consumption (Servings/Day) | p for trend | Dairy Product Consumption (Servings/Day) | p for Trend | ||||||
0 (n = 3479) | 0< to <1 (n = 644) | ≥1 (n = 1252) | 0 (n = 4600) | 0< to <1 (n = 1435) | ≥1 (n = 2282) | ||||
AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | ||||||
Obesity 2 | Crude | 1.00 | 0.81 (0.66–0.99) | 0.98 (0.83–1.15) | 0.5377 | 1.00 | 0.76 (0.65–0.90) | 0.66 (0.57–0.76) | <0.0001 **,3 |
Model 1 | 1.00 | 0.79 (0.64–0.97) | 0.99 (0.84–1.16) | 0.5812 | 1.00 | 0.89 (0.75–1.06) | 0.78 (0.67–0.90) | 0.0014 ** | |
Model 2 | 1.00 | 0.79 (0.64–0.97) | 0.98 (0.83–1.15) | 0.5194 | 1.00 | 0.89 (0.75–1.06) | 0.77 (0.66–0.89) | 0.0010 ** | |
Abdominal obesity 2 | Crude | 1.00 | 0.81 (0.65–1.01) | 0.83 (0.69–1.00) | 0.0337 * | 1.00 | 0.68 (0.59–0.79) | 0.58 (0.51–0.66) | <0.0001 ** |
Model 1 | 1.00 | 0.83 (0.66–1.04) | 0.83 (0.66–1.04) | 0.1849 | 1.00 | 0.82 (0.70–0.97) | 0.72 (0.62–0.82) | <0.0001 ** | |
Model 2 | 1.00 | 0.83 (0.66–1.04) | 0.89 (0.74–1.08) | 0.1539 | 1.00 | 0.82 (0.70–0.97) | 0.71 (0.62–0.82) | <0.0001 ** | |
Lowered HDL-C 2 | Crude | 1.00 | 1.06 (0.86–1.31) | 0.96 (0.82–1.13) | 0.7387 | 1.00 | 0.88 (0.76–1.02) | 0.74 (0.65–0.84) | <0.0001 ** |
Model 1 | 1.00 | 1.11 (0.89–1.39) | 1.04 (0.88–1.23) | 0.5786 | 1.00 | 0.95 (0.82–1.10) | 0.80 (0.70–0.91) | 0.0007 ** | |
Model 2 | 1.00 | 1.11 (0.89–1.39) | 1.05 (0.89–1.24) | 0.4936 | 1.00 | 0.95 (0.82–1.11) | 0.82 (0.72–0.93) | 0.0025 ** | |
Elevated TG 2 | Crude | 1.00 | 0.97 (0.79–1.19) | 0.71 (0.61–0.83) | <0.0001 ** | 1.00 | 0.75 (0.63–0.90) | 0.71 (0.60–0.82) | <0.0001 ** |
Model 1 | 1.00 | 1.08 (0.88–1.33) | 0.86 (0.73–1.01) | 0.1080 | 1.00 | 0.93 (0.78–1.14) | 0.93 (0.80–1.09) | 0.3599 | |
Model 2 | 1.00 | 1.08 (0.88–1.33) | 0.86 (0.73–1.01) | 0.1069 | 1.00 | 0.94 (0.77–1.14) | 0.94 (0.80–1.10) | 0.4118 | |
Elevated FBG 2 | Crude | 1.00 | 0.70 (0.57–0.86) | 0.73 (0.62–0.86) | <0.0001 ** | 1.00 | 0.61 (0.50–0.74) | 0.64 (0.54–0.75) | <0.0001 ** |
Model 1 | 1.00 | 0.84 (0.67–1.06) | 0.98 (0.82–1.18) | 0.6568 | 1.00 | 0.73 (0.60–0.89) | 0.79 (0.67–0.93) | 0.0021 ** | |
Model 2 | 1.00 | 0.84 (0.67–1.06) | 0.98 (0.82–1.18) | 0.6496 | 1.00 | 0.73 (0.60–0.90) | 0.80 (0.67–0.95) | 0.0030 ** | |
Elevated BP 2 | Crude | 1.00 | 0.83 (0.66–1.04) | 0.74 (0.62–0.87) | 0.0004 ** | 1.00 | 0.65 (0.54–0.78) | 0.61 (0.52–0.72) | <0.0001 ** |
Model 1 | 1.00 | 0.99 (0.7801.26) | 0.92 (0.77–1.10) | 0.4066 | 1.00 | 0.86 (0.71–1.06) | 0.85 (0.71–1.01) | 0.2379 | |
Model 2 | 1.00 | 0.99 (0.78–1.26) | 0.91 (0.76–1.10) | 0.3869 | 1.00 | 0.86 (0.71–1.06) | 0.85 (0.71–1.01) | 0.2338 | |
MetS 2 | Crude | 1.00 | 0.80 (0.64–1.01) | 0.75 (0.63–0.89) | 0.0005 ** | 1.00 | 0.62 (0.51–0.75) | 0.51 (0.44–0.60) | <0.0001 ** |
Model 1 | 1.00 | 0.93 (0.73–1.19) | 0.95 (0.80–1.14) | 0.5561 | 1.00 | 0.79 (0.64–0.98) | 0.67 (0.56–0.80) | <0.0001 ** | |
Model 2 | 1.00 | 0.93 (0.73–1.19) | 0.96 (0.80–1.14) | 0.5829 | 1.00 | 0.79 (0.64–0.98) | 0.67 (0.56–0.80) | <0.0001 ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.W.; Cho, W. The Consumption of Dairy Products Is Associated with Reduced Risks of Obesity and Metabolic Syndrome in Korean Women but not in Men. Nutrients 2017, 9, 630. https://doi.org/10.3390/nu9060630
Lee KW, Cho W. The Consumption of Dairy Products Is Associated with Reduced Risks of Obesity and Metabolic Syndrome in Korean Women but not in Men. Nutrients. 2017; 9(6):630. https://doi.org/10.3390/nu9060630
Chicago/Turabian StyleLee, Kyung Won, and Wookyoun Cho. 2017. "The Consumption of Dairy Products Is Associated with Reduced Risks of Obesity and Metabolic Syndrome in Korean Women but not in Men" Nutrients 9, no. 6: 630. https://doi.org/10.3390/nu9060630
APA StyleLee, K. W., & Cho, W. (2017). The Consumption of Dairy Products Is Associated with Reduced Risks of Obesity and Metabolic Syndrome in Korean Women but not in Men. Nutrients, 9(6), 630. https://doi.org/10.3390/nu9060630