A Single-Step Purification and Molecular Characterization of Functional Shiga Toxin 2 Variants from Pathogenic Escherichia coli
Abstract
:Abbreviations
(CD50) | 50% cytotoxic dose |
(HUS) | Hemolytic uremic syndrome |
(ID50) | 50% inhibitory dose |
(LB) | Luria-Bertani |
(mAb) | Monoclonal antibody |
(PBS) | Phosphate-buffered saline |
(PAGE) | Polyacrylamide gel electrophoresis |
(Stx) | Shiga toxin |
(STEC) | Shiga toxin-producing Escherichia coli |
(SD) | Standard deviation |
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
Strain | Other names | Serotype | stx genotypeb | Origind | Reference |
---|---|---|---|---|---|
RM10638 | O157:H7 | stx2a | Cow (2009) | This study | |
RM7005 | EH250 | O118:H12 | stx2b. | Clinical | [16] |
RM10058 | O157:H7 | stx2c. | Bird (2009) | This study | |
RM8013 | NDa | stx2d | Cow (2008) | This study | |
RM7110 | S1191 | O139:NM | stx2e | Pig | [17] |
RM7007 | T4/97 | O128:H2 | stx2f | Feral pigeon | [19] |
RM10468 | NDa | stx2g | Cow (2009) | This study | |
RM4876 | O157:H7 | stx-negativec | Watershed (2005) | [33] |
2.2. Purification of Stx2
2.3. Polyacrylamide Gel Electrophoresis (PAGE) and Western Blot
2.4. Cell-Free Translation Assay
2.5. Cytotoxicity of Stx2 and Its Variants
2.6. Neutralization of Stx Activity by Antibody
2.7. Data and Statistical Analyses
3. Results
3.1. Genetic Typing and Sequence Analysis of Stx2 Genes of STEC Strains
Target | Primers | Nucleotide sequences (5'→3') | PCR cycle conditions | Ampicon size (bp) | Reference | |
---|---|---|---|---|---|---|
stx1a | STX1A F2 | CACGTTACAGCGTGTTGCA | 94 °C, 2 min (1×); 94 °C 30 s, 52 °C, 1 min, | |||
STX1A R2 | CGCCCACTGAGATCATCC | 72 °C, 40 s (25×); 72 °C, 5 min (1×) | 219 | [39] | ||
stx1c | Lin-up | GAACGAAATAATTTATATGT | 94 °C, 2 min (1×); 94 °C 1 min, 48.1 °C, 90 s, | |||
IOX3 | CTCATTAGGTACAATTCT | 72 °C, 90 s (30 ×); 72 °C, 5 min (1×) | 555 | [11] | ||
Stx1d | VTIA varF | CTTTTCAGTTAATGCGATTGCT | 94 °C, 2 min (1×); 94 °C 1 min, 62 °C, 1 min, | |||
VTIA varR | AACCCCATGATATCGACTGC | 72 °C, 1 min (5×); 94°, 1 min, 58 °C, 1min, | ||||
72 °C, 1 min (5×); 94°, 1 min, 54 °C, 1min, | ||||||
72 °C, 1 min (20×); 72°, 5 min (1×) | 192 | [10] | ||||
stx2a | Stx2-F | AGATATCGACCCCTCTTGAA | 94 °C, 5 min (1×); 94 °C, 45 s, 60 °C, 45s, | |||
Stx2-R | GTCAACCTTCACTGTAAATG | 72 °C, 90 s (25×); 72 °C, 7 min (1×) | 969 | [40] | ||
stx2b | Stx2-G2-F | TATACGATGACACCGGAAGAAG | 94 °C, 5 min (1×); 94 °C, 30 s, 65 °C, 30s, | |||
Stx2-G2-R | CCTGCGATTCAGAAAAGCAGC | 72 °C, 60 s (25×); 72 °C, 5 min (1×) | 300 | [41] | ||
stx2c | Stx2/2c | TTTTATATACAACGGGTA | 94 °C, 5 min (1×); 94 °C, 30 s, 51 °C, 30 s, | |||
Stx2-G1-R | GGCCACTTTTACTGTGAATGTA | 72 °C, 60 s (30×); 72 °C, 5 min (1×) | 163 | [41,42] | ||
stx2d | Stx2d-act | CTTTATATACAACGGGTG | 94 °C, 5 min (1×); 94 °C, 60 s, 54 °C, 60 s, | |||
CKS2 | CTGAATTGTGACACAGATTAC | 72 °C, 60 s (25×); 72 °C, 5 min (1×) | 359 | [42] | ||
stx2e | Stx2-G4-F | CAGGAAGTTATATTTCCGTAGG | 94 °C, 5 min (1×); 94 °C, 30 s, 55 °C, 30 s, | |||
Stx2-G4-R | GTATTCTCTTCCTGACACCTTC | 72 °C, 60 s (25×); 72 °C, 5 min (1×) | 911 | [41] | ||
stx2f | Stx2-G3-F | TTTACTGTGGATTTCTCTTCGC | 94 °C, 5 min (1×); 94 °C, 30s, 61 °C, 30 s, | |||
Stx2-G3-R | TCAGTAAGATCCTGAGGCTTG | 72 °C, 60 s (25×); 72 °C, 5 min (1×) | 875 | [41] | ||
stx2g | 209F | GTTATATTTCTGTGGATATC | 94 °C, 5 min (1×), 94 °C, 45 s, 55 °C, 60 s, | |||
781R | GAATAACCGCTACAGTA | 72 °C, 60 s (25×); 72 °C, 7 min (1×) | 573 | [20] |
Stx2 type | A subunit | Aligned score | B subunit | Aligned score |
---|---|---|---|---|
Stx2a | 319 aa | 100 | 89 aa | 100 |
Stx2b | 319 aa | 93 | 87 aa | 88 |
Stx2c | 319 aa | 99 | 89 aa | 96 |
Stx2d | 319 aa | 99 | 89 aa | 95 |
Stx2e | 319 aa | 94 | 87 aa | 87 |
Stx2f | 319 aa | 69 | 87 aa | 82 |
Stx2g | 319 aa | 95 | 89 aa | 94 |
3.2. Purification of Stx2 and Stx2 Variants
Stx type | Before purification | After purification | Recovery | Cytotoxicity | Enzymatic activity |
---|---|---|---|---|---|
(ng/mL of supernatant) | (ng/mL of supernatant) | (%) | (CD50)a | (ID50)a | |
Stx2c | 1320 | 306 | 23.18 | 1.00 ng (a) | 30 pg/uL (a) |
Stx2d | 3300 | 220 | 6.67 | 1.00 ng (a) | 40 pg/uL (b) |
Stx2a | 1250 | 470 | 37.6 | 0.10 ng (b) | 40 pg/uL (b) |
Stx2g | 2960 | 281 | 9.5 | 0.01 ng (c) | 160 pg/uL(c) |
Stx2b | ndb | 40 | ndb | ndb | ndb |
Stx2e | ndb | 60 | ndb | ndb | ndb |
Stx2f | ndb | 0 | ndb | ndb | ndb |
3.3. Cytotoxicity and Enzymatic Activity of Stx2 Variants
3.4. Neutralization of Toxin Activity
3.5. Stability of Stx2 Variants
4. Discussion
Acknowledgments
Conflict of Interest
References
- Karch, H.; Tarr, P.I.; Bielaszewska, M. Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol. 2005, 295, 405–418. [Google Scholar] [CrossRef]
- Manning, S.D.; Madera, R.T.; Schneider, W.; Dietrich, S.E.; Khalife, W.; Brown, W.; Whittam, T.S.; Somsel, P.; Rudrik, J.T. Surveillance for Shiga toxin-producing Escherichia coli, Michigan, 2001–2005. Emerg. Infect. Dis. 2007, 13, 318–321. [Google Scholar]
- O'Brien, A.D.; Tesh, V.L.; Donohue-Rolfe, A.; Jackson, M.P.; Olsnes, S.; Sandvig, K.; Lindberg, A.A.; Keusch, G.T. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol. 1992, 180, 65–94. [Google Scholar]
- O'Brien, A.D.; Marques, L.R.; Kerry, C.F.; Newland, J.W.; Holmes, R.K. Shiga-like toxin converting phage of enterohemorrhagic Escherichi coli strain 933. Microb. Pathog. 1989, 6, 381–390. [Google Scholar] [CrossRef]
- Endo, Y.; Tsurugi, K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 1988, 263, 8735–8739. [Google Scholar]
- Lingwood, C.A. Verotoxins and their glycolipid receptors. Adv. Lipid. Res. 1993, 25, 189–211. [Google Scholar]
- DeGrandis, S.; Law, H.; Brunton, J.; Gyles, C.; Lingwood, C.A. Globotetraosylceramide is recognized by the pig edema disease toxin. J. Biol. Chem. 1989, 264, 12520–12525. [Google Scholar]
- Boerlin, P.; McEwen, S.A.; Boerlin-Petzold, F.; Wilson, J.B.; Johnson, R.P.; Gyles, C.L. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 1999, 37, 497–503. [Google Scholar]
- Ostroff, S.M.; Tarr, P.I.; Neill, M.A.; Lewis, J.H.; Hargrett-Bean, N.; Kobayashi, J.M. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 1989, 160, 994–998. [Google Scholar] [CrossRef]
- Bürk, C.; Dietrich, R.; Acar, G.; Moravek, M.; Bulte, M.; Märtlbauer, E. Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin. J. Clin. Microbiol. 2003, 41, 2106–2112. [Google Scholar]
- Koch, C.; Hertwig, S.; Lurz, R.; Appel, B.; Beutin, L. Isolation of a lysogenic bacteriophage carrying the stx1OX3 gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J. Clin. Microbiol. 2001, 39, 3992–3998. [Google Scholar] [CrossRef]
- Paton, A.W.; Beutin, L.; Paton, J.C. Heterogeneity of the amino-acid sequences of Escherichia coli Shiga-like toxin type-I operons. Gene 1995, 153, 71–74. [Google Scholar] [CrossRef]
- Paton, A.W.; Paton, J.C.; Goldwater, P.N.; Heuzenroeder, M.W.; Manning, P.A. Sequence of a variant Shiga-like toxin type-I operon of Escherichia coli O111:H-. Gene 1993, 129, 87–92. [Google Scholar] [CrossRef]
- Strauch, E.; Schaudinn, C.; Beutin, L. First-time isolation and characterization of a bacteriophage encoding the Shiga toxin 2c variant, which is globally spread in strains of Escherichia coli O157. Infect. Immun. 2004, 72, 7030–7039. [Google Scholar]
- Zweifel, C.; Schumacher, S.; Beutin, L.; Blanco, J.; Stephan, R. Virulence profiles of Shiga toxin 2e-producing Escherichia coli isolated from healthy pig at slaughter. Vet. Microbiol. 2006, 117, 328–332. [Google Scholar] [CrossRef]
- Piérard, D.; Muyldermans, G.; Moriau, L.; Stevens, D.; Lauwers, S. Identification of new verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates. J. Clin. Microbiol. 1998, 36, 3317–3322. [Google Scholar]
- Weinstein, D.L.; Jackson, M.P.; Samuel, J.E.; Holmes, R.K.; O'Brien, A.D. Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine. J. Bacteriol. 1988, 170, 4223–4230. [Google Scholar]
- Bertin, Y.; Boukhors, K.; Pradel, N.; Livrelli, V.; Martin, C. Stx2 subtyping of Shiga toxin-producing Escherichia coli isolated from cattle in France: detection of a new Stx2 subtype and correlation with additional virulence factors. J. Clin. Microbiol. 2001, 39, 3060–3065. [Google Scholar] [CrossRef]
- Schmidt, H.; Scheef, J.; Morabito, S.; Caprioli, A.; Wieler, L.H.; Karch, H. A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl. Environ. Microbiol. 2000, 66, 1205–1208. [Google Scholar]
- Leung, P.H.; Peiris, J.S.; Ng, W.W.; Robins-Browne, R.M.; Bettelheim, K.A.; Yam, W.C. A newly discovered verotoxin variant, VT2g, produced by bovine verocytotoxigenic Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 7549–7553. [Google Scholar]
- Mainil, J. Shiga/verocytotoxins and Shiga/verotoxigenic Escherichia coli in animals. Vet. Res. 1999, 30, 235–257. [Google Scholar]
- Melton-Celsa, A.R.; Kokai-Kun, J.F.; O'Brien, A.D. Activation of Shiga toxin type 2d (Stx2d) by elastase involves cleavage of the C-terminal two amino acids of the A2 peptide in the context of the appropriate B pentamer. Mol. Microbiol. 2002, 43, 207–215. [Google Scholar] [CrossRef]
- Fuller, C.A.; Pellino, C.A.; Flagler, M.J.; Strasser, J.E.; Weiss, A.A. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 2011, 79, 1329–1337. [Google Scholar] [CrossRef]
- Scheutz, F.; Beutin, L.; Piérard, D.; Karch, H.; Tozzoli, R.; Caprioli, A.; O'Brien, A.D.; Melton-Celsa, A.R.; Teel, L.D.; Strockbine, N. Nomenclature of verotoxins: a review, a proposal, and a protocol for typing vtx gene. In the 4th Annual Workshop of the National Reference Laboratories for E. coli in the EU, Rome, Italy, 30 October 2009.
- Nakao, H.; Takeda, T. Escherichia coli Shiga toxin. J. Nat. Toxins 2000, 9, 299–313. [Google Scholar]
- Orth, D.; Grif, K.; Khan, A.B.; Naim, A.; Dierich, M.P.; Wurzner, R. The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome. Diagn. Microbiol. Infect. Dis. 2007, 59, 235–242. [Google Scholar] [CrossRef]
- Jenkins, C.; Willshaw, G.A.; Evans, J.; Cheasty, T.; Chart, H.; Shaw, D.J.; Dougan, G.; Frankel, G.; Smith, H.R. Subtyping of virulence genes in verocytotoxin-producing Escherichia coli (VTEC) other than serogroup O157 associated with disease in the United Kingdom. J. Med. Microbiol. 2003, 52, 941–947. [Google Scholar] [CrossRef]
- Mellmann, A.; Bielaszewska, M.; Kock, R.; Friedrich, A.W.; Fruth, A.; Middendorf, B.; Harmsen, D.; Schmidt, M.A.; Karch, H. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg. Infect. Dis. 2008, 14, 1287–1290. [Google Scholar]
- Prager, R.; Fruth, A.; Siewert, U.; Strutz, U.; Tschape, H. Escherichia coli encoding Shiga toxin 2f as an emerging human pathogen. Int. J. Med. Microbiol. 2009, 299, 343–353. [Google Scholar] [CrossRef]
- Feng, P.C.; Jinneman, K.; Scheutz, F.; Monday, S.R. Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes. Appl. Environ. Microbiol. 2011, 77, 6699–6702. [Google Scholar]
- He, X.; Qi, W.; Quiñones, B.; McMahon, S.; Cooley, M.; Mandrell, R.E. Sensitive detection of Shiga Toxin 2 and some of its variants in environmental samples by a novel immuno-PCR assay. Appl. Environ. Microbiol. 2011, 77, 3558–3564. [Google Scholar] [CrossRef]
- Quiñones, B.; Swimley, M.S.; Taylor, A.W.; Dawson, E.D. Identification of Escherichia coli O157 by using a novel colorimetric detection method with DNA microarrays. Foodborne. Pathog. Dis. 2011, 8, 705–711. [Google Scholar] [CrossRef]
- Cooley, M.; Carychao, D.; Crawford-Miksza, L.; Jay, M.T.; Myers, C.; Rose, C.; Keys, C.; Farrar, J.; Mandrell, R.E. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS ONE 2007, 2, e1159. [Google Scholar]
- Quiñones, B.; Massey, S.; Friedman, M.; Swimley, M.S.; Teter, K. Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl. Environ. Microbiol. 2009, 75, 1410–1416. [Google Scholar] [CrossRef]
- He, X.; Quiñones, B.; Carter, J.M.; Mandrell, R.E. Validation of a cell-free translation assay for detecting Shiga toxin 2 in bacterial culture. J. Agric. Food. Chem. 2009, 57, 5084–5088. [Google Scholar]
- Neal, L.M.; O'Hara, J.; Brey, R.N., 3rd; Mantis, N.J. A monoclonal immunoglobulin G antibody directed against an immunodominant linear epitope on the ricin A chain confers systemic and mucosal immunity to ricin. Infect. Immun. 2010, 78, 552–561. [Google Scholar] [CrossRef]
- O'Brien, A.O.; Lively, T.A.; Chen, M.E.; Rothman, S.W.; Formal, S.B. Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet 1983, 1, 702. [Google Scholar]
- Schmitt, C.K.; McKee, M.L.; O'Brien, A.D. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H- strain E32511. Infect. Immun. 1991, 59, 1065–1073. [Google Scholar]
- Kyle, J.L.; Cummings, C.A.; Parker, C.T.; Quinones, B.; Vatta, P.; Newton, E.; Huynh, S.; Swimley, M.; Degoricija, L.; Barker, M.; Fontanoz, S.; Nguyen, K.; Patel, R.; Fang, R.; Tebbs, R.; Petrauskene, O.; Furtado, M.; Mandrell, R.E. Escherichia coli serotype O55:H7 diversity supports parallel acquisition of bacteriophage at Shiga toxin phage insertion sites during evolution of the O157:H7 lineage. J. Bacteriol. 2012, 194, 1885–1896. [Google Scholar]
- Yamasaki, S.; Lin, Z.; Shirai, H.; Terai, A.; Oku, Y.; Ito, H.; Ohmura, M.; Karasawa, T.; Tsukamoto, T.; Kurazono, H.; Takeda, Y. Typing of verotoxins by DNA colony hybridization with poly- and oligonucleotide probes, a bead-enzyme-linked immunosorbent assay, and polymerase chain reaction. Microbiol. Immunol. 1996, 40, 345–352. [Google Scholar]
- Nakao, H.; Kimura, K.; Murakami, H.; Maruyama, T.; Takeda, T. Subtyping of Shiga toxin 2 variants in human-derived Shiga toxin-producing Escherichia coli strains isolated in Japan. FEMS Immunol. Med. Microbiol. 2002, 34, 289–297. [Google Scholar] [CrossRef]
- Zheng, J.; Cui, S.; Teel, L.D.; Zhao, S.; Singh, R.; O'Brien, A.D.; Meng, J. Identification and characterization of Shiga toxin type 2 variants in Escherichia coli isolates from animals, food, and humans. Appl. Environ. Microbiol. 2008, 74, 5645–5652. [Google Scholar]
- Downes, F.P.; Barrett, T.J.; Green, J.H.; Aloisio, C.H.; Spika, J.S.; Strockbine, N.A.; Wachsmuth, I.K. Affinity purification and characterization of Shiga-like toxin II and production of toxin-specific monoclonal antibodies. Infect. Immun. 1988, 56, 1926–1933. [Google Scholar]
- Oku, Y.; Yutsudo, T.; Hirayama, T.; O'Brien, A.D.; Takeda, Y. Purification and some properties of a Vero toxin from a human strain of Escherichia coli that is immunologically related to Shiga-like toxin II (VT2). Microb. Pathog. 1989, 6, 113–122. [Google Scholar] [CrossRef]
- MacLeod, D.L.; Gyles, C.L. Purification and characterization of an Escherichia coli Shiga-like toxin II variant. Infect. Immun. 1990, 58, 1232–1239. [Google Scholar]
- Tesh, V.L.; Burris, J.A.; Owens, J.W.; Gordon, V.M.; Wadolkowski, E.A.; O'Brien, A.D.; Samuel, J.E. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 1993, 61, 3392–3402. [Google Scholar]
- Quiñones, B.; Swimley, M.S. Use of a Vero cell-based fluorescent assay to assess relative toxicities of Shiga toxin 2 subtypes from Escherichia coli. Methods. Mol. Biol. 2011, 739, 61–71. [Google Scholar] [CrossRef]
- Quiñones, B.; Swimley, M.S. USDA-ARS-Western Regional Research Center, Albany, CA. Relative toxicities of stx2 variants expressed by Shiga toxin-producing Escherichia coli from produce production regions in California. 2011; unpublished work. [Google Scholar]
- Rasooly, R.; Do, P.M. Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. Int. J. Food Microbiol. 2010, 136, 290–294. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
He, X.; Quiñones, B.; McMahon, S.; Mandrell, R.E. A Single-Step Purification and Molecular Characterization of Functional Shiga Toxin 2 Variants from Pathogenic Escherichia coli. Toxins 2012, 4, 487-504. https://doi.org/10.3390/toxins4070487
He X, Quiñones B, McMahon S, Mandrell RE. A Single-Step Purification and Molecular Characterization of Functional Shiga Toxin 2 Variants from Pathogenic Escherichia coli. Toxins. 2012; 4(7):487-504. https://doi.org/10.3390/toxins4070487
Chicago/Turabian StyleHe, Xiaohua, Beatriz Quiñones, Stephanie McMahon, and Robert E. Mandrell. 2012. "A Single-Step Purification and Molecular Characterization of Functional Shiga Toxin 2 Variants from Pathogenic Escherichia coli" Toxins 4, no. 7: 487-504. https://doi.org/10.3390/toxins4070487
APA StyleHe, X., Quiñones, B., McMahon, S., & Mandrell, R. E. (2012). A Single-Step Purification and Molecular Characterization of Functional Shiga Toxin 2 Variants from Pathogenic Escherichia coli. Toxins, 4(7), 487-504. https://doi.org/10.3390/toxins4070487