Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice
Abstract
:1. Introduction
2. Results and Discussion
Groups | Exposures | PCE | NCE | MN-PCE | MN-NCE | %PCE | %NCE |
---|---|---|---|---|---|---|---|
1 | Control (Filtered water) | 564.17 ± 31.02 | 2435.83 ± 31.02 | 0.67 ± 0.33 | 10.67 ± 1.54 | 18.81 ± 1.03 | 81.19 ± 1.03 |
2 | Cry10Aa (1 × 109 spores/kg) | 267.33 ± 37.52 * | 2732.67 ± 37.52 * | 0.17 ± 0.17 | 9.67 ± 2.04 | 8.91 ± 1.25 * | 91.09 ± 1.25 * |
3 | Cry10Aa (5 × 109 spores/kg) | 549.50 ± 66.56 | 2450.50 ± 66.56 | 0.67 ± 0.21 | 9.33 ± 1.17 | 18.32 ± 2.22 | 81.68 ± 2.22 |
4 | Cry10Aa (1 × 1010 spores/kg) | 505.83 ± 65.7 | 2494.17 ± 65.70 | 0.17 ± 0.17 | 7.83 ± 1.58 | 16.86 ± 2.19 | 83.14 ± 2.19 |
5 | Cry1Ba6 (4 × 108 spores/kg) | 471.50 ± 44.31 | 2528.50 ± 44.31 | 0.33 ± 0.21 | 15.50 ± 3.76 | 15.72 ± 1.48 | 84.28 ± 1.48 |
6 | Cry1Ba6 (2 × 109 spores/kg) | 565.17 ± 80.97 | 2434.83 ± 80.97 | 0.17 ± 0.17 | 17.33 ± 3.66 | 18.84 ± 2.70 | 81.16 ± 2.70 |
7 | Cry1Ba6 (4 × 109 spores/kg) | 503.50 ± 60.47 | 2496.50 ± 60.47 | 0.33 ± 0.21 | 12.17 ± 3.25 | 16.78 ± 2.02 | 83.22 ± 2.02 |
8 | Cry1Ia (4 × 108 spores/kg) | 308.33 ± 38.87 | 2691.67 ± 38.87 | 0.67 ± 0.33 | 8.33 ± 1.45 | 10.28 ± 1.30 | 89.72 ± 1.3 |
9 | Cry1Ia (2 × 109 spores/kg) | 454.33 ± 71.11 | 2545.67 ± 71.11 | 0.83 ± 0.40 | 11.33 ± 1.43 | 15.14 ± 2.37 | 84.86 ± 2.37 |
10 | Cry1Ia (4 × 109 spores/kg) | 520.00 ± 44.59 | 2480.00 ± 44.59 | 0.67 ± 0.33 | 11.67 ± 2.78 | 17.33 ± 1.49 | 82.67 ± 1.49 |
Group | Exposures | Erythrocytes (×106/μL) | HGB (g/dL) | HCT (%) | MCH (pg) | MCHC (g/dL) | MCV (fL) | RDW (%) |
---|---|---|---|---|---|---|---|---|
1 | Control (filtered water) | 7.72 ± 0.20 | 12.22 ± 0.21 | 29.85 ± 0.61 | 15.85 ± 0.23 | 40.95 ± 0.38 | 38.68 ± 0.33 | 14.68 ± 0.89 |
2 | Cry10Aa (1 × 109 spores/kg) | 8.20 ± 0.16 | 11.97 ± 0.20 | 30.48 ± 0.56 | 14.60 ± 0.14 * | 39.27 ± 0.14 * | 37.17 ± 0.38 | 16.20 ± 0.36 |
3 | Cry10Aa (5 × 109 spores/kg) | 7.40 ± 0.21 | 10.63 ± 0.35 | 26.95 ± 0.88 | 14.37 ± 0.13 * | 39.45 ± 0.10 * | 36.38 ± 0.27 * | 15.95 ± 0.29 |
4 | Cry10Aa (1 × 1010 spores/kg) | 7.55 ± 0.33 | 10.85 ± 0.53 | 27.60 ± 1.35 | 14.33 ± 0.23 * | 39.27 ± 0.29 * | 36.52 ± 0.59 * | 16.70 ± 0.68 |
5 | Cry1Ba6 (4 × 108 spores/kg) | 8.32 ± 0.12 | 12.15 ± 0.18 | 30.22 ± 0.38 | 14.60 ± 0.20 * | 40.23 ± 0.25 | 36.35 ± 0.42 * | 15.40 ± 0.46 |
6 | Cry1Ba6 (2 × 109 spores/kg) | 8.46 ± 0.23 | 11.97 ± 0.33 | 30.58 ± 0.83 | 14.15 ± 0.11 * | 39.12 ± 0.14 * | 36.13 ± 0.22 * | 16.53 ± 0.41 |
7 | Cry1Ba6 (4 × 109 spores/kg) | 8.73 ± 0.18 | 12.30 ± 0.39 | 31.53 ± 0.76 | 14.08 ± 0.19 * | 38.98 ± 0.33 * | 36.13 ± 0.36 * | 16.50 ± 0.72 |
8 | Cry1Ia (4 × 108 spores/kg) | 7.72 ± 0.12 | 11.42 ± 0.18 | 28.68 ± 0.42 | 14.80 ± 0.08 * | 39.82 ± 0.31 * | 37.22 ± 0.36 | 17.55 ± 0.48 |
9 | Cry1Ia (2 × 109 spores/kg) | 8.04 ± 0.14 | 11.73 ± 0.24 | 29.70 ± 0.39 | 14.62 ± 0.21 * | 39.48 ± 0.32 * | 37.00 ± 0.42 | 17.82 ± 0.69 |
10 | Cry1Ia (4 × 109 spores/kg) | 8.11 ± 0.37 | 11.63 ± 0.53 | 30.17 ± 1.22 | 14.43 ± 0.12 * | 38.50 ± 0.27 * | 37.25 ± 0.33 | 19.02 ± 0.83 * |
Groups | Exposures | Total of leukocytes (%) | Lymphocytes (%) | Neutrophils + Monocytes (%) | Eosinophils (%) | Lymphocytes (×103/μL) | Neutrophils + Monocytes (×103/μL) | Eosinophils (×103/μL) |
---|---|---|---|---|---|---|---|---|
1 | Control (Filtered water) | 9.67 ± 1.19 | 51.32 ± 3.19 | 46.25 ± 3.07 | 2.43 ± 1.64 | 4.92 ± 0.63 | 4.48 ± 0.66 | 0.27 ± 0.19 |
2 | Cry10Aa (1 × 109 spores/kg) | 8.18 ± 1.16 | 47.33 ± 4.69 | 51.65 ± 4.85 | 1.02 ± 0.45 | 3.93 ± 0.73 | 4.15 ± 0.61 | 0.10 ± 0.07 |
3 | Cry10Aa (5 × 109 spores/kg) | 6.50 ± 1.07 | 43.27 ± 6.24 | 54.87 ± 6.22 | 1.87 ± 0.38 | 2.98 ± 0.76 | 3.42 ± 0.56 | 0.10 ± 0.03 |
4 | Cry10Aa (1 × 1010 spores/kg) | 9.85 ± 3.52 | 35.20 ± 4.63 * | 61.08 ± 6.43 | 3.72 ± 2.25 | 2.87 ± 0.72 | 6.73 ± 2.80 | 0.25 ± 0.11 |
5 | Cry1Ba6 (4 × 108 spores/kg) | 6.12 ± 1.20 | 59.63 ± 3.80 | 38.35 ± 3.25 | 2.02 ± 1.92 | 3.75 ± 0.81 | 2.35 ± 0.48 * | 0.02 ± 0.02 |
6 | Cry1Ba6 (2 × 109 spores/kg) | 5.28 ± 1.00 | 61.87 ± 4.26 | 35.82 ± 4.13 | 2.32 ± 1.90 | 3.47 ± 0.74 | 1.73 ± 0.34 * | 0.08 ± 0.07 |
7 | Cry1Ba6 (4 × 109 spores/kg) | 5.73 ± 1.47 | 65.02 ± 2.95 * | 34.05 ± 2.58 | 0.93 ± 0.55 | 3.90 ± 1.15 | 1.80 ± 0.35 * | 0.03 ± 0.02 |
8 | Cry1Ia (4 × 108 spores/kg) | 8.50 ± 0.88 | 52.58 ± 3.65 | 46.75 ± 3.74 | 0.67 ± 0.32 | 4.58 ± 0.67 | 3.87 ± 0.32 | 0.05 ± 0.02 |
9 | Cry1Ia (2 × 109 spores/kg) | 9.83 ± 0.94 | 57.37 ± 5.82 | 41.73 ± 5.47 | 0.90 ± 0.53 | 5.73 ± 0.91 | 4.02 ± 0.50 | 0.08 ± 0.03 |
10 | Cry1Ia (4 × 109 spores/kg) | 8.52 ± 1.40 | 44.37 ± 4.73 | 53.97 ± 4.76 | 1.67 ± 0.46 | 3.82 ± 0.76 | 4.57 ± 0.86 | 0.13 ± 0.06 |
Groups | Exposures | PLT (×103/μL) | MPV (fl) | P-LCR (%) | PDW (fl) |
---|---|---|---|---|---|
1 | Control (Filtered water) | 1413.33 ± 138.85 | 5.38 ± 1.08 | 5.83 ± 1.55 | 5.60 ± 1.12 |
2 | Cry10Aa (1 × 109 spores/kg) | 1149.50 ± 87.72 | 7.10 ± 0.17 * | 11.93 ± 1.34 * | 7.02 ± 0.09 * |
3 | Cry10Aa (5 × 109 spores/kg) | 1128.83 ± 64.71 | 7.07 ± 0.17 * | 11.15 ± 1.25 * | 7.07 ± 0.15 |
4 | Cry10Aa (1 × 1010 spores/kg) | 1467.50 ± 206.34 | 7.13 ± 0.25 * | 11.93 ± 1.50 * | 6.93 ± 0.26 |
5 | Cry1Ba6 (4 × 108 spores/kg) | 1530.00 ± 39.61 | 6.58 ± 0.03 | 8.43 ± 0.38 | 6.68 ± 0.07 |
6 | Cry1Ba6 (2 × 109 spores/kg) | 1449.40 ± 90.90 | 7.14 ± 0.12 * | 12.16 ± 0.47 * | 7.10 ± 0.17 |
7 | Cry1Ba6 (4 × 109 spores/kg) | 1541.33 ± 59.24 | 7.04 ± 0.25 * | 11.76 ± 1.45 * | 7.06 ± 0.17 |
8 | Cry1Ia (4 × 108 spores/kg) | 1675.00 ± 55.71 | 6.90 ± 0.09 | 9.10 ± 0.60 | 7.13 ± 0.07 * |
9 | Cry1Ia (2 × 109 spores/kg) | 1789.67 ± 180.68 | 7.00 ± 0.13 * | 9.87 ± 0.72 | 7.20 ± 0.12 * |
10 | Cry1Ia (4 × 109 spores/kg) | 1778.40 ± 200.69 | 7.34 ± 0.20 * | 12.70 ± 1.05 * | 7.38 ± 0.21 * |
3. Experimental Section
3.1. Bt Spore-Crystals
3.2. Study Design
3.3. Micronucleus and Cytotoxicity Tests
3.4. Hematotoxicity Tests
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Burges, H.D. Control of insects by bactéria. Parasitol. 1982, 84, 79–114. [Google Scholar] [CrossRef]
- Knowles, B.H.; Dow, J.A.T. The crystal δ-endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. BioEssays 1993, 15, 469–476. [Google Scholar] [CrossRef]
- Hofmann, C.; Vanderbruggen, H.; Höfte, H.; Rie, J.V.; Jansens, S.; Mellaert, H.V. Specificity of Bacillus thuringiensis δ-endotoxins is Correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 1988, 85, 7844–7848. [Google Scholar] [CrossRef] [PubMed]
- Van Rie, J.; Jansens, S.; Höfte, H.; Degheele, D.; Mellaert, H.V. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol. 1990, 56, 1378–1385. [Google Scholar]
- Monnerat, R.G.; Bravo, A. Proteínas bioinseticidas produzidas pela bactéria Bacillus thuringiensis: Modo de Ação e Resistência. In Controle. Biológico, 1st ed.; Melo, I.S., Azevedo, J.L., Eds.; Jaguariúna, Embrapa Meio Ambiente: Planaltina-DF, Brazil, 2000; Volume 3, pp. 1603–2000. [Google Scholar]
- Wood, H.A.; Hughes, P.R. Biopesticides. Science 1993, 261. [Google Scholar] [CrossRef]
- Kathage, J.; Qaim, M. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc. Natl. Acad. Sci. USA 2012, 109, 11652–11656. [Google Scholar] [CrossRef] [PubMed]
- Monnerat, R.G.; Martins, E.S.; Praça, L.; Dumas, V.; Berry, C. Activity of a Brazilian strain of Bacillus thuringiensis israelensis against the cotton boll weevil Anthonomus grandis Boheman (Coleoptera: Tenebrionidae). Neotrop. Entomol. 2012, 41, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Firmino, A.A.P.; Fonseca, F.C.A.; Macedo, L.L.P.; Coelho, R.R.; Souza, J.D.A., Jr.; Togawa, R.C.; Silva-Junior, O.B.; Pappas, G.J., Jr.; Silva, M.C.M.; Engler, G.; et al. Transcriptome analysis in cotton bol weevil (Anthonomus grandis) and RNA interference in insect pest. PLoS One 2013, 8, 1–15. [Google Scholar]
- Martins, E.S.; Aguiar, R.W.S.; Martins, N.F.; Melatti, V.M.; Falcão, R.; Gomes, A.C.M.M.; Ribeiro, B.M.; Monnerat, R.G. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera. frugiperda). J. Appl. Microbiol. 2008, 104, 1363–1371. [Google Scholar]
- Aguiar, R.W.S.; Martins, E.S.; Ribeiro, B.M.; Monnerat, R.G. Cry10Aa Protein is highly toxic to Anthonomus. grandis Boheman (Coleoptera: Curculionidae), an important insect pest in Brazilian cotton crop fields. Bt Res. 2012, 3, 20–28. [Google Scholar]
- Martins, E.S.; Monnerat, R.G.; Queiroz, P.R.; Dumas, V.F.; Braz, S.V.; Aguiar, R.W.S.; Gomes, A.C.; Sánchez, J.; Bravo, A.; Ribeiro, B.M. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putatite receptors for the Cry1B protein of Bacillus thurigiensis. Insect Biochem. Mol. Biol. 2010, 40, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Herrero, S.; Oppert, B.; Ferré, J. Different mechanism of resistance to Bacillus thuringiensis toxins in the Indianmeal Moth. Appl. Environ. Microbiol. 2001, 67, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Thrall, M.A.; Baker, D.C.; Campbell, T.W.; Denicola, D.; Fettman, M.J.; Lassen, E.D.; Rebar, A.; Weiser, G. Veterinary Hematology and Clinical Chemistry, 2nd ed.; Wiley-Blackweell: Oxford, UK, 2012. [Google Scholar]
- Everds, N.E. Hematology of the laboratory mouse. In The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models, 2nd ed.; Fox, J.G., Barthold, S.W., Davisson, M.T., Newcomer, C.E., Quimby, F.W., Smith, A.L., Eds.; Elsevier: San Diego, CA, USA, 2007; Volume 3, pp. 133–170. [Google Scholar]
- Siegel, J.P. The mammalian safety of Bacillus thuringiensis based insectides. J. Invertebr. Pathol. 2001, 77, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Schroder, M.; Poulsen, M.; Wilcks, A.; Kroghsbo, S.; Miller, A.; Frenzel, T.; Danier, J.; Rychlik, M.; Emami, K.; Gatehouse, A.; et al. A 90-day safetu study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis) in Wistar rats. Food Chem. Toxicol. 2007, 45, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Grisolia, C.K.; Oliveira, R.; Domingues, I.; Oliveira-Filho, E.C.; Monnerat, R.G.; Soares, A.M. Genotoxic evaluation of different delta-endotoxins from Bacillus thuringiensis on zebrafish adults and development in early life stages. Mutat. Res. 2009, 672, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Freire, I.S.; Miranda-Vilela, A.L.; Fascineli, M.L.; Oliveira-Filho, E.C.; Martins, E.S.; Monerat, R.G.; Grisolia, C.K. Genotoxic evaluation in Oreochromis. niloticus (Fish: Characidae) of recombinant spore-crystal complexes Cry1Ia, Cry10Aa and CyrBa6 from Bacillus thuringiensis. Ecotoxicology 2014, 23, 267–272. [Google Scholar]
- Mezzomo, B.P.; Miranda-Vilela, A.L.; Freire, I.S.; Barbosa, L.C.P.; Portilho, F.A.; Lacava, Z.G.M.; Grisolia, C.K. Hematotoxicity of Bacillus thuringiensis as spore-crystal strains Cry1Aa, Cry1Ab, Cry1Ac ou Cry2Aa in swiss albino mice. J. Hematol. Thromb. Dis. 2013, 1, 1–9. [Google Scholar] [CrossRef]
- National Toxicology Program. Available online: http://ntp.niehs.nih.gov/testing/types/genetic/invivo/mn/index.html (accessed on 9 June 2014).
- Glare, T.R.; O’Callaghan, M. Report for the Ministry of Health. Environmental and health impacts of Bacillus thuringiensis israelensis. Available online: http://www.beyondpesticides.org/mosquito/documents/BacillusThuringiensisIsraelensisNZ.pdf (accessed on 25 March 2014).
- Thomas, W.E.; Ellar, D.J. Bacillus thuringiensis var israelensis crystal δ-endotoxin: Effects on insect and mammalian cells in vitro and in vivo. J. Cell. Sci. 1983, 60, 181–197. [Google Scholar] [PubMed]
- Vázquez-Padron, R.I.; Gonzáles-Cabrerra, J.; Garcia-Tovar, C.; Neri-Bazan, L.; Lopez-Revilla, R.; Hernández, M.; Moreno-Fierro, L.; de la Riva, G.A. Cry1Ac protoxin from Bacillus thuringiensis sp. Kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochem. Biophys. Res. Commun. 2000, 271, 54–58. [Google Scholar]
- Grotto, H.Z.W.; Noronha, J.F.A. Platelet larger cell ratio (P-LCR) in patients with dyslipidemia. Clin. Lab. Haematol. 2004, 26, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Khandekar, M.M.; Khurana, A.S.; Deshmukh, S.D.; Kakrani, A.L.; Katdare, A.D.; Inamdar, A.K. Platelet volume indices in patients with coronary artery disease and acute myocardial infarction: An Indian scenario. J. Clin. Pathol. 2006, 59, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Verdoia, M.; Barbieri, L.; Schaffer, A.; Cassetti, E.; Di Giovine, G.; Bellomo, G.; Marino, P.; Sinigaglia, F.; de Luca, G. Platelet distribution width and the risk of periprocedural myocardial infarction in patients undergoing percutaneous coronary intervention. J. Thromb. Thromb. 2014, 37, 345–352. [Google Scholar] [CrossRef]
- Meyer, D.J.; Coles, E.H.; Rich, L.J. Veterinary Laboratory Medicine: Interpretation and Diagnosis, 3rd ed.; Saunders Elsevier: Gainesville, FL, USA, 2004. [Google Scholar]
- Parker, M.W.; Feil, S.C. Pore-forming protein toxins: From structure to function. Prog. Biophys. Mol. Biol. 2005, 88, 91–142. [Google Scholar] [CrossRef] [PubMed]
- Aris, A.; Leblanc, S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebece, Canada. Reprod. Toxicol. 2011, 31, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Xu, W.; Luo, Y.; He, X.; Yuan, Y.; Ran, W.; Liang, L.; Huang, K. Metabonomics study of transgenic Bacillus thuringiensis rice (T2A-1) meal in a 90-day dietary toxicity study in rats. Mol. BioSyst. 2011, 7, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Drobniewski, F.A. The Safety of Bacillus thuringiensis species as insect vector control agents. J. Appl. Bacteriol. 1994, 76, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; McGaughey, W.H. Contribution of Bacillus thuringiensis spore to toxicity of purified Cry protein towards indianmeal moth larvae. Curr. Microbiol. 1996, 33, 54–50. [Google Scholar] [CrossRef] [PubMed]
- Dipel. Registro do Ministério da Agricultura, Pecuária e Abatecimento—MAPA sob No. 00291. Available online: http://www.agricultura.pr.gov.br/arquivos/File/defis/DFI/Bulas/Inseticidas/DIPEL.pdf (accessed on 24 March 2014).
- Monnerat, R.G.; Batista, A.C.; Medeiros, P.T.S.; Martins, E.S.; Melatti, V.; Praça, L.; Dumas, V.; Demo, C.; Gomes, A.C.M.; Falcao, R.; et al. Characterization of Brazilian Bacillus thuringiensis strains active against Spodoptera. frugiperda, Plutella. xylostella and Anticarsia. gemmatalis. Biol. Control. 2007, 41, 291–295. [Google Scholar]
- Silva-Werneck, J.O.; Ellar, D.J. Characterization of a novel Cry9Bb δ-endotoxin from Bacillus thuringiensis. J. Invertebr. Pathol. 2008, 98, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Cantón, P.E.; López-Díaz, J.A.; Gill, S.S.; Bravo, A.; Soberón, M. Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity. Peptides 2013, 53, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Likitvivatanavong, S.; Aimanova, K.G.; Gill, S.S. A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp Israelensis. Insect. Biochem. Mol. Biol. 2013, 43, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.B.; Moraes, S.B. Controle Microbiano de Inseto, 2nd ed.; Faculdade de Engenharia Agronômica Luis de Queiroz: Piracicaba, São Paulo, Brazil, 1998. [Google Scholar]
- Sanches, V.; Gohar, M.; Chaufaux, J.; Arantes, O.; Meier, A.; Agaisse, H.; Cayley, J.; Lereclus, D. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. App. Environ. Microbiol. 1999, 65, 4032–4039. [Google Scholar]
- Escudero, I.R.; Estela, A.; Porcar, M.; Martínez, C.; Oguiza, J.A.; Escriche, B.; Ferré, J.; Caballero, P. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Appl. Environ. Microbiol. 2006, 72, 4796–4804. [Google Scholar] [CrossRef] [PubMed]
- American Veterinary Medical Association (AVMA). AVMA Guidelines on Euthanasia: 2013 Edition. Available online: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf (accessed on 8 March 2014).
- Hayashi, M.; Morita, T.; Kodama, Y.; Sofuni, T.; Ishidate, M., Jr. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat. Res. 1990, 245, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Heddle, J.A.; Carrano, A.V. The DNA content of micronuclei induced in mouse bone marrow by gamma-irradiation: Evidence that micronuclei arise from acentric chromosomal fragments. Mutat. Res. 1977, 44, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. The in vitro micronucleus techique. Mutat. Res. 2000, 455, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Statistical Package for the Social Sciences version 17.0. Available online: http://www.jou.ufl.edu/archive/researchlab/SPSS-Statistcs-Base-Users-Guide-17.0.pdf (accessed on 14 January 2013).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Souza Freire, I.; Miranda-Vilela, A.L.; Barbosa, L.C.P.; Martins, E.S.; Monnerat, R.G.; Grisolia, C.K. Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice. Toxins 2014, 6, 2872-2885. https://doi.org/10.3390/toxins6102872
De Souza Freire I, Miranda-Vilela AL, Barbosa LCP, Martins ES, Monnerat RG, Grisolia CK. Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice. Toxins. 2014; 6(10):2872-2885. https://doi.org/10.3390/toxins6102872
Chicago/Turabian StyleDe Souza Freire, Ingrid, Ana Luisa Miranda-Vilela, Lilian Carla Pereira Barbosa, Erica Soares Martins, Rose Gomes Monnerat, and Cesar Koppe Grisolia. 2014. "Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice" Toxins 6, no. 10: 2872-2885. https://doi.org/10.3390/toxins6102872
APA StyleDe Souza Freire, I., Miranda-Vilela, A. L., Barbosa, L. C. P., Martins, E. S., Monnerat, R. G., & Grisolia, C. K. (2014). Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice. Toxins, 6(10), 2872-2885. https://doi.org/10.3390/toxins6102872