Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction
Abstract
:1. Introduction
- Overactive bladder (OAB): A common disorder caused by neurogenic (or idiopathic) detrusor muscle overactivity that results in increased urgency and frequency, nocturia, and urinary pain. A large segment of the patient population has refractory OAB, which is usually not responsive to common oral medications.
- Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS): A chronic inflammatory condition with unknown origin that results in chronic pelvic pain, nocturia, and increased urgency and frequency. Patients generally suffer from debilitating bladder pain. Current treatment options include hyaluronic acid, amitryptaline, pentosan polysulfate, immunosuppressants and topical anesthetics.
- Hemorrhagic Cystitis (HC): A serious condition that results in inflammation and chronic bleeding in the bladder. It can be caused by radiation therapy, chemotherapy, or infection. There are currently no approved treatments, and standard of care therapies, such as hyperbaric oxygen therapy, have a small effect in much of the patient population and can be very expensive. Unless managed properly, HC may progress to a point where a cystectomy is necessary, and can ultimately lead to death.
2. The Urothelium
3. Rationale for Intravesical Treatment of Bladder Dysfunction
- Extending duration of drug contact with urothelium
- Minimizing systemic toxicity side effects
- Repair of urothelium
- Achieving higher drug concentrations in the bladder wall than systemic administration
- Modulating neurotransmission and sensory nerve function
4. Clinical Studies of Liposomes for IC/BPS
5. Liposomal Delivery of Botulinum Toxin in Treatment of Bladder Dysfunction
6. Liposomal Delivery of Tacrolimus in Treatment of Hemorrhagic and Radiation Cystitis
7. Conclusions
Conflicts of Interest
Abbreviations
BoNT-A | botulinum neurotoxin serotype A |
GAG | glycosaminoglycan |
HC | hemorrhagic cystitis |
IC/BPS | interstitial cystitis/bladder pain syndrome |
IMI | intermicturition interval |
Lipo-BoNT | liposomal botulinum neurotoxin serotype A |
LUT | lower urinary tract |
OAB | overactive bladder |
OABSS | overactive bladder symptom score |
NGF | nerve growth factor |
RC | radiation cystitis |
SARRP | small animal radiation research platform |
SNAP-25 | synaptosomal-associated protein, 25 kDa |
UUI | urgency urinary incontinence |
References
- Weintraub, M.D.; Li, Q.Q.; Agarwal, P.K. Advances in intravesical therapy for the treatment of non-muscle invasive bladder cancer (Review). Mol. Clin. Oncol. 2014, 2, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Chuang, Y.C.; Chancellor, M.B. Intravesical drug delivery for dysfunctional bladder. Int. J. Urol. 2013, 20, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; Tyagi, V.; Anthony, M.; Chancellor, M.B.; Tyagi, P. State of the art in intravesical therapy for lower urinary tract symptoms. Rev. Urol. 2010, 12, e181–e189. [Google Scholar] [PubMed]
- Lewis, S.A. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am. J. Physiol. Renal Phisiol. 2000, 278, F867–F874. [Google Scholar]
- Apodaca, G. The uroepithelium: Not just a passive barrier. Traffic 2004, 5, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Min, G.; Zhou, G.; Schapira, M.; Sun, T.T.; Kong, X.P. Structural basis of urothelial permeability barrier function as revealed by cryo-em studies of the 16 nm uroplakin particle. J. Cell Sci. 2003, 116, 4087–4094. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, R.; Nastruzzi, C. Liposomes, micelles and microemulsions as new delivery systems for cytotoxic alkaloids. Pharm. Sci. Technol. Today 1999, 2, 288–298. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Lee, W.C.; Lee, W.C.; Chiang, P.H. Intravesical liposome versus oral pentosan polysulfate for interstitial cystitis/painful bladder syndrome. J. Urol. 2009, 182, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Liu, H.T.; Chuang, Y.C.; Birder, L.A.; Chancellor, M.B. Pilot study of liposome-encapsulated onabotulinumtoxin A for patients with overactive bladder: A single-center study. Eur. Urol. 2014, 65, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Gregoriadis, G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotechnol. 1995, 13, 527–537. [Google Scholar] [CrossRef]
- Chang, H.I.; Yeh, M.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 2012, 7, 49–60. [Google Scholar]
- Negrete, H.O.; Lavelle, J.P.; Berg, J.; Lewis, S.A.; Zeidel, M.L. Permeability properties of the intact mammalian bladder epithelium. Am. J. Physiol. 1996, 271, F886–F894. [Google Scholar] [PubMed]
- Pavelic, Z.; Skalko-Basnet, N.; Jalsenjak, I. Characterisation and in vitro evaluation of bioadhesive liposome gels for local therapy of vaginitis. Int. J. Pharm. 2005, 301, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Gregoriadis, G. The carrier potential of liposomes in biology and medicine (first of two parts). N. Engl. J. Med. 1976, 295, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Rajaganapathy, B.R.; Chancellor, M.B.; Nirmal, J.; Dang, L.; Tyagi, P. Bladder uptake of liposomes after intravesical administration occurs by endocytosis. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Mitchell, A.T.; Wolf-Johnston, A.S.; Barrick, S.R.; Kanai, A.J.; Chancellor, M.B.; de Groat, W.C.; Birder, L.A. Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol. Urodyn. 2015, 34, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, J.; Wolf-Johnston, A.S.; Chancellor, M.B.; Tyagi, P.; Anthony, M.; Kaufman, J.; Birder, L.A. Liposomal inhibition of acrolein-induced injury in rat cultured urothelial cells. Int. Urol. Nephrol. 2014, 46, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.M.; Hasenau, D.; Killinger, K.A.; Chancellor, M.B.; Anthony, M.; Kaufman, J. Liposomal bladder instillations for IC/BPS: An open-label clinical evaluation. Int. Urol. Nephrol. 2014, 46, 2291–2295. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, M.B.; Smith, C.P. Botulinum Toxin in Urology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Dong, M.; Yeh, F.; Tepp, W.H.; Dean, C.; Johnson, E.A.; Janz, R.; Chapman, E.R. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006, 312, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C. OnabotulinumtoxinA: How Deep Will It Go? Eur. Urol. 2014, 65, 1125–1127. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Kuo, H.C.; Chancellor, M.B. Botulinum toxin for the lower urinary tract. BJU Int. 2010, 105, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Tyagi, P.; Huang, C.C.; Yoshimura, N.; Wu, M.; Kaufman, J.; Chancellor, M.B. Urodynamic and immunohistochemical evaluation of intravesical botulinum toxin A delivery using liposomes. J. Urol. 2009, 182, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Khera, M.; Somogyi, G.T.; Salas, N.A.; Kiss, S.; Boone, T.B.; Smith, C.P. In vivo effects of botulinum toxin A on visceral sensory function in chronic spinal cord-injured rats. Urology 2005, 66, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Yohimura, N.; Huang, C.C.; Chiang, P.H.; Chancellor, M.B. Intravesical botulinum toxin A administration produces analgesia against acetic acid induced bladder pain responses in rats. J. Urol. 2004, 172, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
- Tzan, C.J.; Berg, J.R.; Lewis, S.A. Mammalian urinary bladder permeability is altered by cationic proteins: Modulation by divalent cations. Am. J. Physiol. 1994, 267, C1013–C1026. [Google Scholar] [PubMed]
- Chuang, Y.C.; Kaufmann, J.H.; Chancellor, D.D.; Chancellor, M.B.; Kuo, H.C. Bladder instillation of liposome encapsulated onabotulinumtoxin A improves overactive bladder symptoms: A prospective, multicenter, double-blind, randomized trial. J. Urol. 2014, 192, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Migita, K.; Eguchi, K. FK506-mediated T-cell apoptosis induction. Transplant. Proc. 2001, 33, 2292–2293. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Tyagi, P.; Huang, H.Y.; Yoshimura, N.; Wu, M.; Kaufman, J.; Chancellor, M.B. Intravesical immune suppression by liposomal tacrolimus in cyclophosphamide-induced inflammatory cystitis. Neurourol. Urodyn. 2011, 30, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, J.; Tyagi, P.; Chancellor, M.B.; Kaufman, J.; Anthony, M.; Chancellor, D.D.; Chen, Y.T.; Chuang, Y.C. Development of potential orphan drug therapy of intravesical liposomal tacrolimus for hemorrhagic cystitis due to increased local drug exposure. J. Urol. 2013, 189, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Rajaganapathy, B.R.; Janicki, J.J.; Levanovich, P.; Tyagi, P.; Hafron, J.; Chancellor, M.B.; Krueger, S.; Marples, B. Intravesical liposomal tacrolimus protects against radiation cystitis induced by 3-beam targeted bladder radiation. J. Urol. 2015, 194, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Dave, C.N.; Chaus, F.; Chancellor, M.B.; Lajness, M.; Peters, K.M. Innovative use of intravesical tacrolimus for hemorrhagic radiation cystitis. Int. Urol. Nephrol. 2015, 47, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicki, J.J.; Chancellor, M.B.; Kaufman, J.; Gruber, M.A.; Chancellor, D.D. Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction. Toxins 2016, 8, 81. https://doi.org/10.3390/toxins8030081
Janicki JJ, Chancellor MB, Kaufman J, Gruber MA, Chancellor DD. Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction. Toxins. 2016; 8(3):81. https://doi.org/10.3390/toxins8030081
Chicago/Turabian StyleJanicki, Joseph J., Michael B. Chancellor, Jonathan Kaufman, Michele A. Gruber, and David D. Chancellor. 2016. "Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction" Toxins 8, no. 3: 81. https://doi.org/10.3390/toxins8030081
APA StyleJanicki, J. J., Chancellor, M. B., Kaufman, J., Gruber, M. A., & Chancellor, D. D. (2016). Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction. Toxins, 8(3), 81. https://doi.org/10.3390/toxins8030081