Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Piezoresistive Transduction
3.1.1. Static Mode
3.1.2. Dynamic Mode
3.2. Piezoelectric Polymer Transducer
3.3. Piezotransistive Transducer from P(VDF-TrFE)-Gated OFET
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, C. Recent Developments in Polymer MEMS. Adv. Mater. 2007, 19, 3783–3790. [Google Scholar] [CrossRef]
- Kim, B.J.; Meng, E. Review of polymer MEMS micromachining. J. Micromech. Microeng. 2015, 26, 013001. [Google Scholar] [CrossRef]
- Villanueva, L.G.; Bausells, J.; Brugger, J. Grand Challenge in N/MEMS. Front. Mech. Eng. 2016, 1, 15. [Google Scholar] [CrossRef]
- Srinivasan, A.; Bandyopadhyay, S. Advances in Polymer Materials and Technology, 1st ed.; Taylor Francis CRC Press: Boca Raton, FL, USA, 2016; 824p. [Google Scholar]
- Nordström, M.; Keller, S.; Lillemose, M.; Johansson, A.; Dohn, S.; Haefliger, D.; Blagoi, G.; Havsteen-Jakobsen, M.; Boisen, A. SU-8 cantilevers for bio/chemical sensing: Fabrication, characterization and development of novel read-out methods. Sensors 2008, 8, 1595–1612. [Google Scholar] [CrossRef] [PubMed]
- Abgrall, P.; Conedera, V.; Camon, H.; Gue, A.-M.; Nguyen, N.-T. SU-8 as a structural material for labs-on-chip and microelectromechanical systems. Electrophoresis 2007, 28, 4539–4551. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, N.; Woodard, J.; Hansford, D. Fabrication of polymer microstructures for MEMS: Sacrificial layer micromolding and patterned substrate micromolding. Biomed. Microdevices 2007, 9, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Van Oosten, C.L.; Bastiaansen, C.W.; Broer, D.J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 2009, 8, 677–682. [Google Scholar] [CrossRef]
- Greve, A.; Keller, S.; Vig, A.L.; Kristensen, A.; Larsson, D.; Yvind, K.; Hvam, J.M.; Cerruti, M.; Majumdar, A.; Boisen, A. Thermoplastic microcantilevers fabricated by nanoimprint lithography. J. Micromech. Microeng. 2010, 20, 015009. [Google Scholar] [CrossRef]
- Ayela, C.; Dubourg, G.; Pellet, C.; Haupt, K. All-organic Microelectromechanical Systems Integrating Specific Molecular Recognition—A New Generation of Chemical Sensors. Adv. Mater. 2014, 26, 5876. [Google Scholar] [CrossRef] [PubMed]
- Haefliger, D.; Boisen, A. Three-dimensional microfabrication in negative resist using printed masks. J. Micromech. Microeng. 2006, 16, 951. [Google Scholar] [CrossRef]
- Foulds, I.G.; Parameswaran, M. A planar self-sacrificial multilayer SU-8-based MEMS process utilizing a UV-blocking layer for the creation of freely moving parts. J. Micromech. Microeng. 2006, 16, 2109. [Google Scholar] [CrossRef]
- Dubourg, G.; Fadel-Taris, L.; Dufour, I.; Pellet, C.; Ayela, C. Collective microfabrication of all-organic microcantilevers platform based on the hierarchical combination of shadow-masking and wafer bonding processing methods. J. Micromech. Microeng. 2011, 21, 095021. [Google Scholar] [CrossRef]
- Chia Gomez, L.P.; Spangenberg, A.; Ton, X.-A.; Fuchs, Y.; Bokeloh, F.; Malval, J.-P.; Tse Sum Bui, B.; Thuau, D.; Ayela, C.; Haupt, K.; et al. Rapid prototyping of chemical microsensors based on molecularly imprinted polymers synthesized by 2-photon stereolithography. Adv. Mater. 2016, 28, 5931–5937. [Google Scholar] [CrossRef] [PubMed]
- Accoto, C.; Qualtieri, A.; Pisanello, F.; Ricciardi, C.; Pirri, C.F.; De Vittorio, M. Two-photon polymerization lithography and laser doppler vibrometry of a SU-8-based suspended microchannel resonator. J. Microelectromech. Syst. 2015, 24, 1038. [Google Scholar] [CrossRef]
- Brand, O.; Dufour, I.; Heinrich, S.; Josse, F. Resonant MEMS: Fundamentals, Implementation, and Application, 1st ed.; Wiley-VCH: Weinheim, Germany, 2015; 512p. [Google Scholar]
- Lang, U.; Rust, P.; Dual, J. Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges. Microelectron. Eng. 2008, 85, 1050–1053. [Google Scholar] [CrossRef]
- Gammelgaard, L.; Rasmussen, P.A.; Calleja, M.; Vettiger, P.; Boisen, A. Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor. Appl. Phys. Lett. 2006, 88, 113508. [Google Scholar] [CrossRef] [Green Version]
- Seena, V.; Rajorya, A.; Pant, P.; Mukherji, S.; Rao, V.R. Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection. Solid State Sci. 2009, 11, 1606–1611. [Google Scholar] [CrossRef]
- Siong, L.K.; Azid, I.A.; Sidek, O.; Ibrahim, K.; Devarajan, M. SU-8 piezoresistive microcantilever with high gauge factor. IET Micro Nano Lett. 2013, 8, 123–126. [Google Scholar] [CrossRef]
- Loyola, B.R.; La Saponara, V.; Loh, K.J. In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J. Mater. Sci. 2010, 45, 6786–6798. [Google Scholar] [CrossRef]
- Seena, V.; Fernandes, A.; Pant, P.; Mukherji, S.; Ramgopal Rao, V. Polymer nanocomposite nanomechanical cantilever sensors: Material characterization, device development and application in explosive vapour detection. Nanotechnology 2011, 22, 295501. [Google Scholar] [CrossRef] [PubMed]
- Seena, V.; Hari, K.; Prajakta, S.; Rudra Pratap, R.; Ramgopal Rao, V. A novel piezoresistive polymer nanocomposite MEMS accelerometer. J. Micromech. Microeng. 2017, 27, 015014. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.S.; Lee, J.A.; Lee, K.C.; Ji, S. Carbon nanotube film piezoresistors embedded in polymer membranes. App. Physics Lett. 2010, 96, 013511. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.X.; Wang, Y.; Chyu, M.K.; Wang, Q.M. Fabrication and characterization of carbon nanotube–polyimide composite based high temperature flexible thin film piezoresistive strain sensor. Sens. Actuators A Phys. 2013, 199, 265–271. [Google Scholar] [CrossRef]
- Hu, B.; Hu, N.; Li, Y.; Akagi, K.; Yuan, W.; Watanabe, T.; Cai, Y. Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 2012, 7, 402. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, H.; Yougblood, J.P. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 2008, 19, 55705–55715. [Google Scholar] [CrossRef] [PubMed]
- Thuau, D.; Ayela, C.; Poulin, P.; Dufour, I. Highly piezoresistive hybrid MEMS sensors. Sens. Actuators A Phys. 2014, 209, 161–168. [Google Scholar] [CrossRef]
- Thuau, D.; Ayela, C.; Lemaire, E.; Heinrich, S.; Poulin, P.; Dufour, I. Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators. Mater. Horiz. 2015, 2, 106–112. [Google Scholar] [CrossRef]
- Tadigadapa, S.; Mateti, K. Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 2009, 20, 092001. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Demartin Maeder, M.; Damjanovic, D.; Setter, N. Lead Free Piezoelectric Materials. J. Electro. 2004, 13, 385–392. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, M.; Hong, J.; Ding, J.; Chen, C.Y.; Chou, L.J.; Wang, Z.L. Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano. 2011, 5, 10041–10046. [Google Scholar] [CrossRef] [PubMed]
- Thuau, D.; Kallitsis, K.; Domingues Dos Santos, F.; Hadziioannou, G. All inkjet-printed piezoelectric electronic devices: Energy generators, sensors and actuators. J. Mater. Chem. C 2017, 5, 9963–9966. [Google Scholar] [CrossRef]
- Pabst, O.; Perelaer, J.; Beckert, E.; Schubert, U.S.; Eberhardt, R.; Tunnermann, A. All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micro-pumps in lab-on-a-chip systems. Org. Electron. 2013, 14, 3423–3429. [Google Scholar] [CrossRef]
- Ramadan, K.S.; Sameoto, D.; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 2014, 23, 033001. [Google Scholar] [CrossRef]
- Ducrot, P.H.; Dufour, I.; Ayela, C. Optimization of PVDF-TrFE Processing Conditions for the Fabrication of Organic MEMS Resonators. Sci. Rep. 2016, 6, 19426. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.M.; Gutiérrez, M.; Mendoza, E.; Llobera, A.; Chu, V.; Conde, J.P. Microelectromechanical resonators based on all polymer/carbon nanotube composite structural material. Appl. Phys. Lett. 2011, 99, 044104. [Google Scholar] [CrossRef] [Green Version]
- Schmid, S.; Wendlandt, M.; Junker, D.; Hierold, C. Nonconductive polymer microresonators actuated by the kelvin polarization force. Appl. Phys. Lett. 2006, 89, 163506. [Google Scholar] [CrossRef]
- Dubourg, G.; Dufour, I.; Pellet, C.; Ayela, C. Optimization of the performances of SU-8 organic microcantilever resonators by tuning the viscoelastic properties of the polymer. Sens. Actuators B Chem. Elsevier 2012, 169, 320–326. [Google Scholar] [CrossRef]
- Shekhawat, G.; Tark, S.H.; Dravid, V.P. MOSFET-Embedded microcantilevers for measuring deflection in biomolecular sensors. Science 2006, 311, 1592. [Google Scholar] [CrossRef] [PubMed]
- Tark, S.H.; Srivastava, A.; Chou, S.; Shekhawat, G.; Dravid, V.P. Microcantilever array with embedded metal oxide semiconductor field effect transistor actuators for deflection control, deflection sensing, and high frequency oscillation. Appl. Phys. Lett. 2009, 94, 104. [Google Scholar] [CrossRef]
- Mostafa, S.; Lee, I.; Islam, S.K.; Eliza, S.A.; Shekhawat, G.; Dravid, V.P.; Tulip, F.S. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant. IEEE Electron Devices Lett. 2011, 32, 408–410. [Google Scholar] [CrossRef]
- Talukdar, A.; Khan, F.M.; Lee, D.; Kim, S.; Thundat, T.; Koley, G. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy. Nat. Commun. 2015, 6, 7885. [Google Scholar] [CrossRef] [PubMed]
- Seena, V.; Nigam, A.; Pant, P.; Mukherji, S.; Rao, V.R. “Organic CantiFET”: A Nanomechanical polymer cantilever sensor with integrated OFET. J. Microelectromech. Syst. 2012, 21, 294. [Google Scholar] [CrossRef]
- Thuau, D.; Abbas, M.; Wantz, G.; Hirsch, L.; Dufour, I.; Ayela, C. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors. Sci. Rep. 2016, 6, 38672. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Rao, V.R. Al-Doped ZnO thin-film transistor embedded micro-cantilever as a piezoresistive sensor. Appl. Phys. Lett. 2013, 102, 064101. [Google Scholar] [CrossRef]
- Lemaire, E.; Thuau, D.; Caillard, B.; Dufour, I. Fast-fabrication process for low environmental impact microsystems. J. Clean. Prod. 2015, 108, 207–216. [Google Scholar] [CrossRef]
- Niedermayer, A.O.; Voglhuber-Brunnmaier, T.; Sell, J.; Jakoby, B. Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices. Meas. Sci. Technol. 2012, 23, 085107. [Google Scholar] [CrossRef]
- Heinisch, M.; Voglhuber-Brunnmaier, T.; Reichel, E.K.; Dufour, I.; Jakoby, B. Reduced order models for resonant viscosity and mass density sensors. Sens. Actuators A Phys. 2014, 220, 76–84. [Google Scholar] [CrossRef]
- Heinisch, M. Mechanical Resonators for Liquid Viscosity and Mass Density Sensing. Ph.D. Thesis, Johanes Kepler University, Linz, Austria, 2015. [Google Scholar]
MEMS. | Transduction | Actuation | Micromachining | Operating Mode | Sensitivity Max | Applications |
---|---|---|---|---|---|---|
Piezoresistive cantilever [5,17,18,19,20,21,22,23,24,25,26,27,28,29] | Piezoresistive | - | Photo-patternable Bulk stacking | Static and Dynamic | 200 [28] | Strain, temperature, gas sensing |
Piezoelectric resonator [31,32,33,34,35,36,37] | Piezoelectric | Piezoelectric | Bulk stacking | Dynamic | NA | Liquid sensing, energy harvesting |
OFET-embedded cantilever [45,46] | Piezotransistive | - | Bulk stacking | Static | 600 [46] | Strain, gas sensing |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuau, D.; Ducrot, P.-H.; Poulin, P.; Dufour, I.; Ayela, C. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors. Micromachines 2018, 9, 197. https://doi.org/10.3390/mi9050197
Thuau D, Ducrot P-H, Poulin P, Dufour I, Ayela C. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors. Micromachines. 2018; 9(5):197. https://doi.org/10.3390/mi9050197
Chicago/Turabian StyleThuau, Damien, Pierre-Henri Ducrot, Philippe Poulin, Isabelle Dufour, and Cédric Ayela. 2018. "Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors" Micromachines 9, no. 5: 197. https://doi.org/10.3390/mi9050197
APA StyleThuau, D., Ducrot, P. -H., Poulin, P., Dufour, I., & Ayela, C. (2018). Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors. Micromachines, 9(5), 197. https://doi.org/10.3390/mi9050197