Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Expression and Purification of Recombinant Enzymes
2.2. The Effect of Temperature and pH on the Recombinant Enzyme Activity
2.3. Steady-State Kinetic Parameters
2.4. Preparation of Cyclopropylglyoxylic Acid
2.5. Proximity Effect Study
2.6. NADH-Driven Biocatalytic Asymmetric Synthesis of (S)-Cyclopropylglycine
2.7. Continuous Synthesis of (S)-Cyclopropylglycine
3. Experimental Section
3.1. Materials
3.2. Construct and Expression Bifunctional Enzyme
3.3. Enzyme Activity Assay
3.4. Steady-State Kinetic Assays
3.5. Preparation of Cyclopropylglyoxylate
3.6. Proximity Effect Study
3.7. Reductive Amination of Cyclopropylglyoxylic Acid with the Self-Sufficient Whole-Cell Biocatalysts
3.8. Continuous Synthesis of (S)-Cyclopropylglycine
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Kotha, S.; Goyal, D.A.; Chavan, S. Diversity-Oriented Approaches to Unusual α-Amino Acids and Peptides: Step Economy, Atom Economy, Redox Economy, and Beyond. J. Org. Chem. 2013, 78, 12288–12313. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, J.F.; Lovelock, S.L.; Sutton, P.W.; Brown, K.K.; Watson, A.J.B.; Roiban, G.D. Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids. Angew. Chem. Int. Ed. 2018, 57, 13821–13824. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, J.F.; Allan, S.L.L.; Watson, J.B.; Sutton, P.W.; Roiban, G.D. N-Alkyl-α-amino acids in Nature and their biocatalytic preparation. J. Biotechnol. 2019, 293, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Hoveyda, H.R.; Marsault, E.; Gagnon, R.; Mathieu, A.P.; Vezina, M.; Landry, A.; Wang, Z.; Benakli, K.; Beaubien, S.; Saint-Louis, C.; et al. Optimization of the Potency and Pharmacokinetic Properties of a Macrocyclic Ghrelin Receptor Agonist (Part I): Development of Ulimorelin (TZP-101) from Hit to Clinic. J. Med. Chem. 2011, 54, 8305–8320. [Google Scholar] [CrossRef] [PubMed]
- Garbaccio, R.M.; Fraley, M.E.; Tasber, E.S.; Olson, C.M.; Hoffman, W.F.; Arrington, K.L.; Torrent, M.C.; Buser, A.; Walsh, E.S.; Hamilton, K.; et al. Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorg. Med. Chem. Lett. 2006, 16, 1780–1783. [Google Scholar] [CrossRef] [PubMed]
- Vallin, K.S.A.; Sterky, K.J.; Nyman, E.; Bernström, J.; From, R.; Linde, C.; Minidis, A.B.E.; Nolting, A.; Närhi, K.; Santangelo, E.M.; et al. N-1-Alkyl-2-oxo-2-aryl amides as novel antagonists of the TRPA1 receptor. Bioorg. Med. Chem. Lett. 2012, 22, 5485–5492. [Google Scholar] [CrossRef] [PubMed]
- Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; et al. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett. 2012, 22, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Talele, T.T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712–8756. [Google Scholar] [CrossRef]
- Zuend, S.J.; Coughlin, M.P.; Lalonde, M.P.; Jacobsen, E.N. Scaleable catalytic asymmetric Strecker syntheses of unnatural a-amino acids. Nature 2009, 461, 968–971. [Google Scholar] [CrossRef]
- Larionov, O.V.; de Meijere, A. Practical Syntheses of Both Enantiomers of Cyclopropylglycine and of Methyl 2-Cyclopropyl-2- N-Boc-iminoacetate. Adv. Synth. Catal. 2006, 348, 1071–1078. [Google Scholar] [CrossRef]
- Hallinan, K.O.; Crout, D.H.G.; Errington, W. Simple synthesis of L- and D-vinylglycine (2-aminobut-3-enoic acid) and related amino acids. J. Chem. Soc. Perkin Trans. 1994, 1, 3537–3543. [Google Scholar] [CrossRef]
- Chenault, H.K.; Dahmer, J.; Whitesides, G.M. Kinetic Resolution of Unnatural and Rarely Occurring Amino Acids: Enantioselective Hydrolysis of N-Acyl Amino Acids Catalyzed by Acylase 1. J. Am. Chem. Soc. 1989, 111, 6354–6364. [Google Scholar] [CrossRef]
- Parker, W.L.; Hanson, R.L.; Goldberg, S.L.; Tully, T.P.; Goswami, A. Preparation of (S)-1-Cyclopropyl-2-methoxyethanamine by a Chemoenzymatic Route Using Leucine Dehydro-genase. Org. Process Res. Dev. 2012, 16, 464–469. [Google Scholar] [CrossRef]
- Bülow, L.; Ljungcrantz, P.; Mosbach, K. Preparation of a soluble biofunctional enzyme by gene fusion. Nat. Biotechnol. 1985, 3, 821–823. [Google Scholar] [CrossRef]
- Conrado, R.J.; Varner, J.D.; DeLisa, M.P. Engineering the spatial organization of metabolic enzymes: Mimicking nature’s synergy. Curr. Opin. Biotechnol. 2008, 19, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Castellana, M.; Wilson, M.Z.; Xu, Y.; Joshi, P.; Cristea, I.M.; Rabinowitz, J.D.; Gitai, Z.; Wingreen, N.S. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 2014, 32, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catal. Lett. 2019, 149, 2204–2217. [Google Scholar] [CrossRef]
- Obata, T. Toward an evaluation of metabolite channeling in vivo. Curr. Opin. Biotechnol. 2020, 64, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, L.; Chen, Y.; Bach, L.S.; Rattleff, S.; Maury, J.; Brix, S.; Nielsen, J.; Mortensen, U.H. Diversion of Flux toward Sesquiterpene Production in Saccharomyces cerevisiae by Fusion of Host and Heterologous Enzyme. Appl. Environ. Microbiol. 2011, 77, 1033–1040. [Google Scholar] [CrossRef]
- Liu, L.K.; Becker, D.F.; Tanner, J.J. Structure, function, and mechanism of proline utilization A (PutA). Arch. Biochem. Biophys. 2017, 632, 142–157. [Google Scholar] [CrossRef]
- Korasick, D.A.; Gamage, T.T.; Christgen, S.; Stiers, K.M.; Beamer, L.J.; Henzl, M.T.; Becker, D.F.; Tanner, J.J. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. J. Biol. Chem. 2017, 292, 9652–9665. [Google Scholar] [CrossRef]
- Moxley, M.A.; Sanyal, N.; Krishnan, N.; Tanner, J.J.; Becke, D.F. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA). J. Biol. Chem. 2014, 289, 3639–3651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.Z.; Li, J.; Pan, X.; Cahoon, R.E.; Jaworski, J.G.; Wang, X.; Jez, J.M.; Chen, F.; Yu, O. Using Unnatural Protein Fusions to Engineer Resveratrol Biosynthesis in Yeast and Mammalian Cells. J. Am. Chem. Soc. 2006, 128, 13030–13031. [Google Scholar] [CrossRef] [PubMed]
- Iturrate, L.; Sánchez-Moreno, I.; Doyagüez, E.G.; García-Junceda, E. Substrate channeling in an engineered bifunctional aldolase/kinase enzyme confers catalytic advantage for C-C bond formation. Chem. Commun. 2009, 13, 1721–1723. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xie, B.; Zhou, L.; Sun, L.; Li, S.; Chen, Y.; Shi, S.; Li, Y.; Yu, M.; Li, W. A Tailor-Made Self-Sufficient Whole-Cell Biocatalyst Enables Scalable Enantioselective Synthesis of (R)-3-Quinuclidinol in a High Space-Time Yield. Org. Process Res. Dev. 2019, 23, 1813–1821. [Google Scholar] [CrossRef]
- Cheng, F.; Zhang, J.M.; Jiang, Z.T.; Wu, X.H.; Xue, Y.P.; Zheng, Y.G. Development of an NAD(H)-driven biocatalytic system for asymmetric synthesis of chiral amino acids. Adv. Synth. Catal. 2022, 364, 1450–1459. [Google Scholar] [CrossRef]
- Luetz, S.; Giver, L.; Lalonde, J.B. Engineered Enzymes for Chemical Production. Biotechnol. Bioeng. 2008, 101, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Fitzpatrick, W.H. Spectrophotometric determination of Amino Acids by the Ninhydrin Reaction. Science 1949, 109, 469. [Google Scholar] [CrossRef]
- Sheng, S.; Kraft, J.J.; Schuster, S.M. A specific quantitative colorimetric assay for L-asparagine. Anal. Biochem. 1993, 211, 242–249. [Google Scholar] [CrossRef]
- Asano, Y.; Yamada, A.; Kato, Y.; Yamaguchi, K.; Hibino, Y.; Hirai, K.; Kondo, K. Enantio-selective Synthesis of (S)-Amino Acids by Phenylalanine Dehydrogenase from Bacillus sphaericus: Use of Natural and Recombinant Enzymes. J. Org. Chem. 1990, 55, 5567–5571. [Google Scholar] [CrossRef]
Enzyme | Optimal Expression Conditions | Specific Activity (U·g−1) | |||
---|---|---|---|---|---|
Temperature | Time | IPTG | Reductive Amination | Coenzyme Regeneration | |
Ti-LDH | 25 °C | 24 h | 0.4 mM | 2086 | / |
Kp-FDH | 25 °C | 48 h | 0.2 mM | / | 398 |
TLK | 16 °C | 48 h | 0.4 mM | 659 | 145 |
Kp-FDH | Ti-LDH | TLK | ||
---|---|---|---|---|
Kp-FDH | Ti-LDH | |||
Km (mM) | 10.15 | 2.35 | 34.00 | 0.33 |
kcat (S−1) | 75.31 | 919.77 | 56.10 | 95.74 |
kcat/Km (S−1 mM−1) | 7.42 | 391.39 | 1.65 | 290.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Li, S.; Zhou, L.; Sun, L.; Xin, J.; Li, W. Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System. Catalysts 2024, 14, 321. https://doi.org/10.3390/catal14050321
Tang Q, Li S, Zhou L, Sun L, Xin J, Li W. Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System. Catalysts. 2024; 14(5):321. https://doi.org/10.3390/catal14050321
Chicago/Turabian StyleTang, Qian, Shanshan Li, Liping Zhou, Lili Sun, Juan Xin, and Wei Li. 2024. "Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System" Catalysts 14, no. 5: 321. https://doi.org/10.3390/catal14050321