Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Properties of the Catalysts
Catalyst | SiO2/Al2O3 a (mol/mol) | SBET (m2∙g−1) | Sext/meso b (m2∙g−1) | Vmicro b (m3∙g−1) | Vt (m3∙g−1) | Acid site amount c (mmol NH3∙g−1) |
---|---|---|---|---|---|---|
ZSC-24 | 60 | 361 | 233 | 0.058 | 0.84 | 0.34 |
Al-SBA-15 | 90 | 446 | 446 | 0 | 0.93 | 0.18 |
H-ZSM-5 | 22 | 373 | 110 | 0.113 | 0.22 | 1.24 |
2.2. Catalyst Evaluation
Feedstock | Triolein | WCO |
---|---|---|
Fatty acid composition as wt. % methyl esters | ||
Dodecanoic acid [C12:0] | - | 1.2 |
Palmitic acid [C16:0] | 1.1 | 37.2 |
Stearic acid [C18:0] | 1.9 | 4.9 |
Oleic acid [C18:1] | 75.6 | 48.8 |
Linoleic acid [C18:2] | 21.4 | 7.9 |
Elemental composition, wt. % | ||
Carbon | 79.4 | 79.4 |
Hydrogen | 12.0 | 12.6 |
Oxygen | 8.6 | 7.8 |
Nitrogen | 0 | 0.2 |
2.2.1. Catalytic Cracking of Triolein
CTO ratio (g·g−1) | 0 | 0.2 | 0.4 | 0.8 | 1.2 | |
---|---|---|---|---|---|---|
Conversion (wt. %) | 24.7 | 62.5 | 70.9 | 77.5 | 79.6 | |
Product yields (wt. %) | Total gas | 6.4 | 21.0 | 28.0 | 38.9 | 41.0 |
Dry gas | 1.3 | 2.1 | 2.3 | 3.0 | 4.0 | |
LPG | 1.7 | 13.1 | 18.0 | 28.9 | 33.0 | |
C2–C4 olefins | 1.9 | 13.5 | 18.2 | 29.4 | 33.5 | |
CO, CO2 | 3.5 | 5.8 | 7.6 | 7.1 | 4.1 | |
C5+ Gasoline | 17.0 | 34.9 | 35.2 | 29.7 | 28.8 | |
LCO | 29.6 | 22.4 | 18.7 | 14.4 | 12.1 | |
HCO | 45.7 | 15.1 | 10.4 | 8.1 | 8.3 | |
Coke | 0.1 | 1.0 | 1.6 | 2.4 | 2.3 | |
Water | 1.1 | 5.6 | 6.1 | 6.5 | 7.5 | |
Selectivity to C2–C4 olefins (%) a | 67.7 | 90.9 | 91.7 | 93.7 | 92.0 |
2.2.2. Catalytic Cracking of WCO
Catalyst | Glass beads | ZSC-24 | H-ZSM-5 | Al-SBA-15 | |
---|---|---|---|---|---|
Conversion (wt. %) | 26.4 | 70.6 | 91.5 | 58.3 | |
Product yields (wt. %) | Total gas | 7.9 | 30.7 | 48.8 | 17.0 |
Dry gas | 1.6 | 2.6 | 8.2 | 2.2 | |
LPG | 2.1 | 22.1 | 33.7 | 8.6 | |
C2–C4 olefins | 2.3 | 22.7 | 30.4 | 8.5 | |
CO/CO2 | 4.2 | 5.9 | 6.9 | 6.3 | |
C5+ Gasoline | 17.3 | 32.2 | 35.0 | 34.3 | |
LCO | 29.0 | 17.7 | 4.0 | 30.4 | |
HCO | 44.6 | 11.7 | 4.5 | 11.2 | |
Coke | 0.1 | 1.4 | 1.2 | 1.7 | |
Water | 1.1 | 6.3 | 6.5 | 5.3 | |
Selectivity to C2–C4 olefin (%) a | 67.6 | 93.2 | 73.5 | 83.3 |
3. Experimental Section
3.1. Catalyst Preparation
3.2. Catalyst and Feedstock Characterization
3.3. Catalyst Tests
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ren, T.; Patel, M.; Blok, K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 2006, 31, 425–451. [Google Scholar] [CrossRef]
- Rahimi, N.; Karimzadeh, R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl. Catal. A 2011, 398, 1–17. [Google Scholar]
- Maher, K.D.; Bressler, D.C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Biores. Technol. 2007, 98, 2351–2368. [Google Scholar] [CrossRef] [PubMed]
- Melero, J.A.; Iglesias, J.; Garcia, A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ. Sci. 2012, 5, 7393–7420. [Google Scholar] [CrossRef]
- Huber, G.W.; Corma, A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 2007, 46, 7184–7201. [Google Scholar] [CrossRef] [PubMed]
- Dupain, X.; Costa, D.J.; Schaverien, C.J.; Makkee, M.; Moulijn, J.A. Cracking of a rapeseed vegetable oil under realistic FCC conditions. Appl. Catal. B 2007, 72, 44–61. [Google Scholar] [CrossRef]
- Rao, T.V.M.; Dupain, X.; Makkee, M. Fluid catalytic cracking: Processing opportunities for Fischer-Tropsch waxes and vegetable oils to produce transportation fuels and light olefins. Micropor. Mesopor. Mater. 2012, 164, 148–163. [Google Scholar]
- Chen, D.; Tracy, N.I.; Crunkleton, D.W.; Price, G.L. Comparison of canola oil conversion over MFI, BEA, and FAU. Appl. Catal. A 2010, 384, 206–212. [Google Scholar] [CrossRef]
- Idem, R.O.; Katikaneni, S.P.R.; Bakhshi, N.N. Catalytic conversion of canola oil to fuels and chemicals: Roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process. Technol. 1997, 51, 101–125. [Google Scholar] [CrossRef]
- Katikaneni, S.P.R.; Adjaye, J.D.; Bakhshi, N.N. Studies on the catalytic conversion of canola oil to hydrocarbons: influence of hybrid catalysts and steam. Energy Fuels 1995, 9, 599–609. [Google Scholar] [CrossRef]
- Katikaneni, S.P.R.; Adjaye, J.D.; Idem, R.O.; Bakhshi, N.N. Catalytic conversion of canola oil over potassium-impregnated HZSM-5 catalysts: C2–C4 olefin production and model reaction studies. Ind. Eng. Chem. Res. 1996, 35, 3332–3346. [Google Scholar] [CrossRef]
- Botas, J.A.; Serrano, D.P.; García, A.; Ramos, R. Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5. Appl. Catal. B 2014, 145, 205–215. [Google Scholar] [CrossRef]
- Vu, X.H.; Schneider, M.; Bentrup, U.; Dang, T.T.; Phan, B.M.Q.; Nguyen, D.A.; Armbruster, U.; Martin, A. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass. Ind. Eng. Chem. Res. 2015, 54, 1773–1782. [Google Scholar] [CrossRef]
- Vu, X.H.; Bentrup, U.; Hunger, M.; Kraehnert, R.; Armbruster, U.; Martin, A. Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J. Mater. Sci. 2014, 49, 5676–5689. [Google Scholar] [CrossRef]
- Wallenstein, D.; Seese, M.; Zhao, X. A novel selectivity test for the evaluation of FCC catalysts. Appl. Catal. A 2002, 231, 227–242. [Google Scholar] [CrossRef]
- Twaiq, F.A.; Zabidi, N.A.M.; Bhatia, S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Ind. Eng. Chem. Res. 1999, 38, 3230–3237. [Google Scholar] [CrossRef]
- Melero, J.A.; Clavero, M.M.; Calleja, G.; Garcia, A.; Miravalles, R.; Galindo, T. Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil. Energy Fuels 2010, 24, 707–717. [Google Scholar] [CrossRef]
- Tago, T.; Konno, H.; Nakasaka, Y.; Masuda, T. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catal. Surv. Asia 2012, 16, 148–163. [Google Scholar] [CrossRef]
- Konno, H.; Tago, T.; Nakasaka, Y.; Ohnaka, R.; Nishimura, J.; Masuda, T. Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha. Micropor. Mesopor. Mater. 2013, 175, 25–33. [Google Scholar] [CrossRef]
- Vu, X.H.; Eckelt, R.; Armbruster, U.; Martin, A. High-temperature synthesis of ordered mesoporous aluminosilicates from ZSM-5 nanoseeds with improved acidic properties. Nanomaterials 2014, 4, 712–725. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, X.H.; Nguyen, S.; Dang, T.T.; Phan, B.M.Q.; Nguyen, D.A.; Armbruster, U.; Martin, A. Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite. Catalysts 2015, 5, 1692-1703. https://doi.org/10.3390/catal5041692
Vu XH, Nguyen S, Dang TT, Phan BMQ, Nguyen DA, Armbruster U, Martin A. Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite. Catalysts. 2015; 5(4):1692-1703. https://doi.org/10.3390/catal5041692
Chicago/Turabian StyleVu, Xuan Hoan, Sura Nguyen, Tung Thanh Dang, Binh Minh Quoc Phan, Duc Anh Nguyen, Udo Armbruster, and Andreas Martin. 2015. "Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite" Catalysts 5, no. 4: 1692-1703. https://doi.org/10.3390/catal5041692