Highly Efficient Electrocatalytic Carboxylation of 1-Phenylethyl Chloride at Cu Foam Cathode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Electrode Materials
2.2. Electrocarboxylation of 1-Phenylethyl Chloride
2.3. Electrocarboxylation of Other Benzyl Chlorides
3. Materials and Methods
3.1. Materials and Instruments
3.2. General Procedure of Electrode Treatment and Preparation
3.3. General Process of Cyclic Voltammetry
3.4. General Electrolysis Procedure
3.5. General Process of Constant-Potential Electrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alkordi, M.H.; Weseliński, Ł.J.; D’Elia, V.; Barman, S.; Cadiau, A.; Hedhili, M.N.; Cairns, A.J.; AbdulHalim, R.G.; Basset, J.-M.; Eddaoudi, M. CO2 conversion: The potential of porous-organic polymers (pops) for catalytic CO2-epoxide insertion. J. Mater. Chem. A 2016, 4, 7453–7460. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, K.H.; Hong, S.H. Carbon dioxide capture and use: Organic synthesis using carbon dioxide from exhaust gas. Angew. Chem. Int. Ed. 2014, 53, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Artz, J.; Muller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H. Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes. ChemSusChem. 2014, 7, 962–998. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Q.; Liu, H.; Jiang, X.F. Recent advances in palladium-catalyzed carboxylation with CO2. Eur. J. Org. Chem. 2018, 696–713. [Google Scholar] [CrossRef]
- Ebert, G.W.; Juda, W.L.; Kosakowski, R.H.; Ma, B.; Dong, L.; Cummings, K.E.; Phelps, M.V.; Mostafa, A.E.; Luo, J. Carboxylation and esterification of functionalized arylcopper reagents. J. Org. Chem. 2005, 70, 4314–4317. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.; Martin, R. Metal-catalyzed carboxylation of organometallic reagents with carbon dioxide. Angew. Chem., Int. Ed. 2009, 48, 6201–6204. [Google Scholar] [CrossRef] [PubMed]
- Gooßen, L.J.; Rodríguez, N.; Gooßen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem., Int. Ed. 2008, 47, 3100–3120. [Google Scholar] [CrossRef] [PubMed]
- Matthessen, R.; Fransaer, J.; Binnemans, K.; De Vos, D.E. Electrocarboxylation: Towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J. Org. Chem. 2014, 10, 2484–2500. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.P.; Lin, Q.; Zhang, H.W.; Li, G.D.; Fan, L.D.; Chai, X.Y.; Zhang, Q.L.; Liu, J.H.; He, C.X. Platinum/nitrogen-doped carbon/carbon cloth: A bifunctional catalyst for the electrochemical reduction and carboxylation of CO2 with excellent efficiency. Chem. Commun. 2018, 54, 4108–4111. [Google Scholar] [CrossRef] [PubMed]
- Tateno, H.; Nakabayashi, K.; Kashiwagi, T.; Senboku, H.; Atobe, M. Electrochemical fixation of CO2 to organohalides in room-temperature ionic liquids under supercritical CO2. Electrochimica Acta 2015, 161, 212–218. [Google Scholar] [CrossRef]
- Tateno, H.; Matsumura, Y.; Nakabayashi, K.; Senboku, H.; Atobe, M. Development of a novel electrochemical carboxylation system using a microreactor. RSC Adv. 2015, 5, 98721–98723. [Google Scholar] [CrossRef]
- Chen, B.-L.; Zhu, H.-W.; Xiao, Y.; Sun, Q.-L.; Wang, H.; Lu, J.-X. Asymmetric electrocarboxylation of 1-phenylethyl chloride catalyzed by electrogenerated chiral [CoI(salen)]− complex. Electrochem. Commun. 2014, 42, 55–59. [Google Scholar] [CrossRef]
- Niu, D.F.; Zhang, J.B.; Zhang, K.; Xue, T.; Lu, J.X. Electrocatalytic carboxylation of benzyl chloride at silver cathode in ionic liquid BMIMBF4. Chin. J. Catal. 2009, 27, 1041–1044. [Google Scholar] [CrossRef]
- Niu, D.F.; Xiao, L.P.; Zhang, A.J.; Zhang, G.R.; Tan, Q.Y.; Lu, J.X. Electrocatalytic carboxylation of aliphatic halides at silver cathode in acetonitrile. Tetrahedron 2008, 64, 10517–10520. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Wang, H.; Lu, J. Cathode made of compacted silver nanoparticles for electrocatalytic carboxylation of 1-phenethyl bromide with CO2. Chin. J. Catal. 2016, 37, 994–998. [Google Scholar] [CrossRef]
- Scialdone, O.; Galia, A.; Errante, G.; Isse, A.A.; Gennaro, A.; Filardo, G. Electrocarboxylation of benzyl chlorides at silver cathode at the preparative scale level. Electrochim. Acta 2008, 53, 2514–2528. [Google Scholar] [CrossRef]
- Isse, A.A.; Ferlin, M.G.; Gennaro, A. Electrocatalytic reduction of arylethyl chlorides at silver cathodes in the presence of carbon dioxide: Synthesis of 2-arylpropanoic acids. J. Electroanal. Chem. 2005, 581, 38–45. [Google Scholar] [CrossRef]
- Isse, A.A.; De Giusti, A.; Gennaro, A.; Falciola, L.; Mussini, P.R. Electrochemical reduction of benzyl halides at a silver electrode. Electrochim. Acta 2006, 51, 4956–4964. [Google Scholar] [CrossRef]
- Isse, A.A.; Gennaro, A. Electrocatalytic carboxylation of benzyl chlorides at silver cathodes in acetonitrile. Chem. Commun. 2002, 2798–2799. [Google Scholar] [CrossRef]
- Sock, O.; Troupel, M.; Perichon, J. Electrosynthesis of carboxylic acids from organic halides and carbon dioxide. Tetrahedron Lett. 1985, 26, 1509–1512. [Google Scholar] [CrossRef]
- Isse, A.A.; Ferlin, M.G.; Gennaro, A. Homogeneous electron transfer catalysis in the electrochemical carboxylation of arylethyl chlorides. J. Electroanal. Chem. 2003, 541, 93–101. [Google Scholar] [CrossRef]
- Bellomunno, C.; Bonanomi, D.; Falciola, L.; Longhi, M.; Mussini, P.R.; Doubova, L.M.; Di Silvestro, G. Building up an electrocatalytic activity scale of cathode materials for organic halide reductions. Electrochim. Acta 2005, 50, 2331–2341. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Jiang, D. First-principles insight into electrocatalytic reduction of CO2 to CH4 on a copper nanoparticle. J. Phys. Chem. C 2018, 122, 11392–11398. [Google Scholar] [CrossRef]
- Raciti, D.; Wang, Y.; Park, J.H.; Wang, C. Three-dimensional hierarchical copper-based nanostructures as advanced electrocatalysts for CO2 reduction. ACS Appl. Energy Mater. 2018. [Google Scholar] [CrossRef]
- An, C.; Kuang, Y.; Fu, C.; Zeng, F.; Wang, W.; Zhou, H. Study on Ag–Pd bimetallic nanoparticles for electrocatalytic reduction of benzyl chloride. Electrochem. Commun. 2011, 13, 1413–1416. [Google Scholar] [CrossRef]
- Poizot, P.; Simonet, J. Silver–palladium cathode. Electrochim. Acta 2010, 56, 15–36. [Google Scholar] [CrossRef]
- Poizot, P.; Laffont-Dantras, L.; Simonet, J. The one-electron cleavage and reductive homo-coupling of alkyl bromides at silver-palladium cathodes. J. Electroanal. Chem. 2008, 624, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Kuang, Y.; Liu, J.; Cui, Y.; Chen, J.; Zhou, H. Fabrication of Ag/Au bimetallic nanoparticles by upd-redox replacement: Application in the electrochemical reduction of benzyl chloride. Electrochem. Commun. 2010, 12, 1233–1236. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Huang, J.; Fang, C.; Shan, D.; Kuang, Y. Ag-Ni alloy nanoparticles for electrocatalytic reduction of benzyl chloride. Trans. Nonferrous Met. Soc. China 2015, 25, 4001–4007. [Google Scholar] [CrossRef]
- Durante, C.; Perazzolo, V.; Perini, L.; Favaro, M.; Granozzi, G.; Gennaro, A. Electrochemical activation of carbon-halogen bonds: Electrocatalysis at silver/copper nanoparticles. Appl. Catal. B: Environ. 2014, 158–159, 286–295. [Google Scholar] [CrossRef]
- Gennaro, A.; Isse, A.A.; Vianello, E. Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents. J. Electroanal. Chem. 1990, 289, 203–215. [Google Scholar] [CrossRef]
- Luo, P.-P.; Zhang, Y.-T.; Chen, B.-L.; Yu, S.-X.; Zhou, H.-W.; Qu, K.-G.; Kong, Y.-X.; Huang, X.-Q.; Zhang, X.-X.; Lu, J.-X. Electrocarboxylation of dichlorobenzenes on a silver electrode in DMF. Catalysts 2017, 7, 274. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Zhao, S.-F.; Niu, D.-F.; Lu, J.-X. Asymmetric electrochemical carboxylation of prochiral acetophenone: An efficient route to optically active atrolactic acid via selective fixation of carbon dioxide. J. Electroanal. Chem. 2009, 630, 35–41. [Google Scholar] [CrossRef]
- Chen, X.; Cui, C.H.; Guo, Z.; Liu, J.H.; Huang, X.J.; Yu, S.H. Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental cu and their enhanced sers properties. Small 2011, 7, 858–863. [Google Scholar] [CrossRef] [PubMed]
Entry | Cathode | J (mA/cm2) | Q (F/mol) | T (°C) | Yield b (%) |
---|---|---|---|---|---|
1 | Cu foam | 5 | 2.0 | 18 | 73 |
2 | Ag–Cu | 5 | 2.0 | 18 | 64 |
3 | Ag flake | 5 | 2.0 | 18 | 57 |
4 | Cu flake | 5 | 2.0 | 18 | 69 |
5 c | Cu foam | 5 | 2.0 | 18 | 6 |
6 | Cu foam | 7 | 2.0 | 18 | 77 |
7 | Cu foam | 8 | 2.0 | 18 | 84 |
8 | Cu foam | 9 | 2.0 | 18 | 87 |
9 | Cu foam | 11 | 2.0 | 18 | 78 |
10 | Cu foam | 13 | 2.0 | 18 | 75 |
11 | Cu foam | 9 | 1.0 | 18 | 45 |
12 | Cu foam | 9 | 1.5 | 18 | 68 |
13 | Cu foam | 9 | 2.5 | 18 | 92 |
14 | Cu foam | 9 | 3.0 | 18 | 93 |
15 | Cu foam | 9 | 2.5 | 35 | 83 |
16 | Cu foam | 9 | 2.5 | 0 | 94 |
17 | Cu foam | 9 | 2.5 | –10 | 99 |
Entry | Substrate | Product | Yield b (%) | ||
---|---|---|---|---|---|
1 | 1a | 2a | 92 | ||
2 | 1b | 2b | 80 | ||
3 | 1c | 2c | 83 | ||
4 | 1d | 2d | 85 | ||
5 | 1e | 2e | 87 | ||
6 | 1f | 2f | 72 | ||
7 | 1g | 2g | 76 | ||
8 | 1h | 2h | 88 | ||
9 | 1i | 2i | -- | ||
10 | 1j | 2j | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.-X.; Sun, Q.-L.; Yang, M.-P.; Zhao, Y.-G.; Guan, Y.-B.; Wang, H.; Lu, J.-X. Highly Efficient Electrocatalytic Carboxylation of 1-Phenylethyl Chloride at Cu Foam Cathode. Catalysts 2018, 8, 273. https://doi.org/10.3390/catal8070273
Wu L-X, Sun Q-L, Yang M-P, Zhao Y-G, Guan Y-B, Wang H, Lu J-X. Highly Efficient Electrocatalytic Carboxylation of 1-Phenylethyl Chloride at Cu Foam Cathode. Catalysts. 2018; 8(7):273. https://doi.org/10.3390/catal8070273
Chicago/Turabian StyleWu, La-Xia, Qi-Long Sun, Man-Ping Yang, Ying-Guo Zhao, Ye-Bin Guan, Huan Wang, and Jia-Xing Lu. 2018. "Highly Efficient Electrocatalytic Carboxylation of 1-Phenylethyl Chloride at Cu Foam Cathode" Catalysts 8, no. 7: 273. https://doi.org/10.3390/catal8070273
APA StyleWu, L. -X., Sun, Q. -L., Yang, M. -P., Zhao, Y. -G., Guan, Y. -B., Wang, H., & Lu, J. -X. (2018). Highly Efficient Electrocatalytic Carboxylation of 1-Phenylethyl Chloride at Cu Foam Cathode. Catalysts, 8(7), 273. https://doi.org/10.3390/catal8070273