Next Article in Journal
Transition Metals Meet Scorpiand-like Ligands
Next Article in Special Issue
Synthesis, Crystal Structure, and Optical Properties of Mononuclear Eu(III) and Tb(III) Complexes Containing a Chalcone Ligand
Previous Article in Journal
High-Performance Zr-Doped P3-Type Na0.67Ni0.33Mn0.67O2 Cathode for Na-Ion Battery Applications
Previous Article in Special Issue
Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Structural Aspects of Pt(η3–P1C2X1C2P2)(Y) Derivative Types

1
Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
2
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
3
Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
4
Toxicological and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
*
Authors to whom correspondence should be addressed.
Crystals 2023, 13(9), 1340; https://doi.org/10.3390/cryst13091340
Submission received: 11 July 2023 / Revised: 28 August 2023 / Accepted: 29 August 2023 / Published: 1 September 2023
(This article belongs to the Special Issue Coordination Complexes: Synthesis, Characterization and Application)

Abstract

:
In this structural study, structural data are classified and analyzed for almost seventy complexes of the general formula Pt(η3–P1X1P2)(Y) (X1 = O, N, C, S, Si) and (Y = various monodentate ligands), in which the respective η3–P1X1P2 ligand forms a pair of five-membered metallocyclic rings with a common X1 atom of the P1C2X1C2P2 type. The present complexes crystallize in five crystal systems: trigonal (1×), tetragonal (1×), orthorhombic (11×), triclinic (18×), and monoclinic (39×). In 69 complexes, a η3 ligand with monodentate Y constructs a distorted square planar geometry around each Pt(II) atom. There is only one complex in which Pt(η3–P1Si1P2)(P3Ph3) constructs a trigonal–pyramidal geometry around a Pt(II) atom. The three P atoms construct a trigonal plane, and the Si atom occupies a pyramid. The structural data are discussed from various points of view, including the covalent radii of the atoms, the degree of distortion, and trans-influence. The trans-effect on the Pt-L bond distance also affects the L-PT-L bond angles, as well as the distortion of square planar geometry around Pt(II) atoms.

1. Introduction

The chemistry of platinum coordination complexes has been intensively studied and developed for more than five decades, focusing on the relationship between structure and reactivity. The chemistry of platinum is important in the fields of biochemistry [1], catalysis [2], spectroscopy [3,4], and coordination theory. Very recently, Horiuchi and Umakoshi published a review that focused on the importance of and advances in the synthetic, structural, thermodynamic, electronic, and photophysical properties of Pt-based heteropolynuclear complexes [5].
Significant attention has been paid to organomonophosphines, representing soft donor ligands in the chemistry of platinum. There are a large number of published structural studies on such complexes that have been classified and analyzed [6]. Another group of related structural studies is devoted to Pt(II) complexes with organodiphosphines [7,8]. Recently, we analyzed and classified structural data for the following compositions: Pt(η4–P4L), Pt(η4–P3 SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL) [9]. As can be seen, P-donor ligands prevail by far. η4–ligands form 10-, 11-, 12-, 14-, and 16-membered metallocycles. A distorted square planar geometry around Pt(II) atoms with cis-configuration prevails by far.
From an application point of view, multifunctional ligands responsible for secondary catalyst–substrate interactions over the course of a catalytic transformation play increasingly important roles in contemporary catalysis, as has been demonstrated also within these groups of platinum complexes with P-donor ligands. Pincer-type complexes constitute a family of compounds that have recently attracted significant interest. They play important roles in organometallic reactions and mechanisms, catalysis, and the design of new materials (see, e.g., reviews [10,11,12,13,14,15,16]). The high thermal stability of such complexes, particularly those based on an aromatic backbone, permits their use as catalysts at elevated temperatures in various catalytic applications. Bulky bis-chelating pincer-type ligands are effective in the stabilization of highly unsaturated cationic complexes and the stabilization of reactive species [10,11,12,13,14,15,16,17].
As a continuation of the investigation of platinum complexes with P-donor ligands, this structural study aims to classify and analyze the structural parameters of heterotridentate organodiphosphines in monomeric four-coordinated platinum complexes of the Pt(η3–P1X1P2)(Y), (X1 = O1L, N1L, C1L, S1L, or Si1L) type, in which each tridentate ligand creates a pair of “equal” five-membered rings with a common X1 atom of the P1C2X1C2P2 type. The application potentialities of these ligands and their complexes are reviewed, as well, to demonstrate the prevailing areas of their practical use.

2. Pt(η3–P1C2X1C2P2)(Y), (X1 = O1,N1, C1, S1, or Si1)

There are 69 complexes in which heterotridentate organodiphosphines create a pair of “equal” five-membered metallocyclic rings with a common X1 atom. These tridentate ligands with monodentate Y ligands construct a square planar geometry with various degrees of distortion around Pt(II) atoms. These complexes are centrosymmetric. Groups of X1 = O1, N1, or C1 structures, which were mentioned for several representatives in our previous work devoted to any type of n-member metallocycle rings (n = 5,6,7) but different types of atoms between P1 and X1 [18], are analyzed in detail in this work, along with a new group of X1 = S1, Si1 structures, highlighting structural aspects related to distortion. The complexes are described in detail via the relevant structural data gathered in Table 1, Table 2 and Table 3 for Pt{η3–P1X1P2}(Y), (X1 = O1, N1), (Y = C2L, N2L, Cl, P3L); Pt{η3–P1C1P2}(Y), (Y = O2L, N2L, CL, Cl, Br); and Pt(η3–P1X1P2)(Y), (X1 = S1 or Si1), (Y = C2L, Cl, P3L, I, H, O2L) structural subgroups, respectively. The chemical structures of particular complexes in these subgroups are gathered in Supplementary Materials and Tables S1–S3 therein. The majority of the cited works describe the synthesis and structural characterization of various ligands and their Pt(II) complexes (just one example of a square planar Pt(0) complex). Pincer ligands and their Pt(II) complexes dominate in the presented application examples; they are all focused on various aspects of synthesis and catalysis performance, as can be seen from brief summaries in Tables S1–S3.

2.1. Pt(η3–P1O1P2)(P3)

Monoclinic [Pt{η3-Ph2P(C15H12O)PPh2}{η1–P3(C5H4N)(Ph)2}](CF3SO3)2•0.5H2O [19] (at 150 K) is the only example of the P1C2O1C2P2 metallocycle type. The structural data are summarized in Table 1. The chemical structure and practical application of this particular complex are presented in Table S1. The heterotridentate η3-P1O1P2 ligand with monodentate P3L creates a distorted square planar geometry around a Pt(II) atom.
The total mean Pt–L bond distance elongates in the following sequences:
Pt (η3-P1O1P2)(Y), Y = P3L (1 example): Pt–L: 2.189 (3) Å (O1, trans to P3) < 2.239 (2) Å (P3) < 2.302 (2,11) Å (P1,2, mutually trans)

2.2. Pt(η3–P1N1P2)(Y), (Y = N2 L, (x1), CL(x9), Cl(x7), P3L(x2))

There are nineteen examples of the P1C2N1C2P2 metallocyclic type with a common N1 atom, and their structural data are summarized in Table 1. The chemical structures and practical applications of these particular complexes are presented in Table S1. Monoclinic [Pt{η3-Ph2P(C12H8N)PPh2}(N2C5H5)]CF3SO3.toluene [20] is the only example in which a N2 donor ligand completed a square planar geometry around a Pt(II) atom (PtP1N1P2N2). The structure of [Pt{η3-Ph2P(C12H8N)PPh2}(N2C5H5)]+ [20] is shown in Figure 1 as an example.
In the following eight complexes, triclinic [Pt{η3-But2P(C7H7N)PBut2}(CH3)]Cl (at 100 K), monoclinic [Pt{η3-But2P(C7H6N)PBut2}(CH3)] [21] (at 100 K), monoclinic [Pt{η3-Ph2P(C7H7N)PPh2}{C(=O)Et}]BF4.(CH2Cl2)5 [22] (at 100 K), triclinic [Pt{η3-Ph2P(C7H7N)PPh2}(CH2CHO)]BF4 [22], triclinic [Pt{η3-Ph2P(C7H7N)PPh2}(CH=CHPh)]BF4 [23], monoclinic [Pt{η3-Pri2P(C12H7F2N)PPri2}(C6H4F)]B(C6H5)4 (at 110 K) and monoclinic [Pt{η3-Pri2P(C12H7F2N)PPri2}. (p-toluene)]B(C6H5)4 [24] (at 110 K), and monoclinic [Pt{η3-Ph2P(C7H7N)PPri2}(η1-C11H15NO3)]BF4 [25] and a η3-P1N1P2 ligand with a monodentate CL create a distorted square planar geometry around a Pt(II) atom (PtP1N1P2C).
There are seven complexes, monoclinic [Pt{η3-Ph2P(C12H8N)PPh2}(Cl)](C6H6)5 [20], trigonal [Pt{η3-But2P(C7H7N)PBut2}(Cl)]Cl [21], orthorhombic [Pt{η3-But2P(C7H6N)PBut2}(Cl)] [21] (at 120 K), monoclinic [Pt{η3-Pri2P(C12H6F2N)PPri2}(Cl)]CHB11Cl11 [24] (at 110 K), monoclinic [Pt{η3-Ph2P(C14H12N)PPri2}(Cl)]C6H6 [26] (at 183 K) and triclinic [Pt{η3-Ph2P(C14H12N)Pcy2}(Cl)]C6H6 [26] (at 183 K), and monoclinic [Pt{η3-Ph2P(C7H8N)PPh2}(Cl)] [27] in which Cl anions complete inner coordinate spheres (PtP1N1P2Cl).
In the remaining two complexes, triclinic [Pt{η3-(η2-(C24H44)P(C7H6N)P(C24H44)} (PPh3)].2CH2Cl2 [28] (at 103 K) and monoclinic [Pt{η3-(η2-C18H28)P(C7H6N)P(η2-C18H29)}(P3cy3)] [29] (at 103 K), a monodentate P3L is involved (PtP1N1P2P3).
The total mean Pt-L bond distance elongates in the following sequences:
Pt (η3-P1N1P2)(Y), Y = N2L, CL, Cl, P3L (19 examples): Pt–N1: (trans to Y): 2.024 (3) Å (N2) < 2.077 (2,5) Å (P3) < 2.128 (2,70) Å (C) < 2.201 (3,26) Å (Cl); Pt–Y: (trans to N1): 2.056 (3) Å (N2) < 2.072 (2,85) Å (C) < 2.277 (2,5) Å (P3) < 2.316 (2,17) Å (Cl); Pt–P1,2: (mutually trans) is 2.287 (2,17) Å

2.3. Pt(η3–P1C1P2)(Y), (Y = OL (x4), NL(x4), C2L (x9), Cl (x12), Br (x2))

There are over thirty examples of the P1C2C1C2P2 metallocycle type, and their structural data are summarized in Table 2. The chemical structures and practical applications of these particular complexes are presented in Table S2. In four complexes, monoclinic [Pt{η3-(CF3)2P(C8H7)P(CF3)2}(H2O)].SbF6 [30], triclinic [Pt{η3-Ph2P(C8H7)Ph2P}(H2O)]CF3SO3 [31], triclinic [Pt{η3-Ph2P(C8H7)PPh2}(OMe)]0.5C6H6 [31], and orthorhombic [Pt{η3-Pri2P(C20H11)PPri2}(OOCCF3)] [32] (Figure 2), a monodentate OL ligand completed a square planar geometry (PtP1C1P2O).
In four complexes, monoclinic [Pt{η3-(CF3)2P(C8H7)P(CF3)2} (NC5H5)]B(C6H5)4 [30], orthorhombic [Pt{η3-Ph2P(C20H13O4)PPh2}(N≡CCH3)]BF4 [32], monoclinic [Pt{η3-Ph2P(C20H11O2)PPh2}(NC5H5)]Cl}](NC5H5) [33], and monoclinic [Pt{η3-Ph2P(C20H11O4)PPh2} (N≡CCH3)]BF4. CH2Cl2 [33], monodentate NL ligands completed the inner coordination sphere PtP1N1P2N2.
There are nine complexes, tetragonal [Pt{η3-Ph2P(C24H19O2)PPh2}(CN)] [34], triclinic [Pt{η3-(CF3)2P(C8H7)P(CF3)2}(CO)]SbF6 [35], monoclinic [Pt{η3-(CF3)2P(C8H7)P(CF3)2}(CH3)] [35], monoclinic [Pt{η3-Pri2P(C8H7)PPri2}(CO)]CF3SO3 0.5C6H6 [36], monoclinic [Pt{η3-But2P(C8H7)PBut2}(η1-CHOMe)]CF3SO3.thf [36], orthorhombic [Pt{η3-But2P(C12H9)PBut2}(CO)]BF4 [37], monoclinic [Pt{η3-Ph2P(C8H7)PPh2}(η1-C12H19N2)] [38], monoclinic [Pt{η3-Ph2P(C6H7N2)PPh2}(η1-C3F2)] [39], and monoclinic [Pt{η3-Ph2P(C8H7)PPh2}(η1-C12H21N2)]2(BF4) [40], in which a monodentate C2L ligands are involved (PtP1C1P2C2).
In twelve complexes, triclinic [Pt{η3-Ph2P(C20H11O2)PPh2}(Cl)](CH3CN)4 [33], monoclinic [Pt{η3-Ph2P(C24H19O2)PPh2}(Cl)] [34], monoclinic [Pt{η3-(CF3)2P(C8H7)P(CF3)2}(Cl)]1.5C6H14 [35], orthorhombic [Pt{η3-But2P(C8H7)PBut2}(Cl)] [36], monoclinic [Pt{η3-But2P(C12H9)PBut2}(Cl)] [37], monoclinic [Pt{η3-But2P(C8H7)PBut2}(Cl)] [41], triclinic [Pt{η3-Pri2P(C8H7)PPri2}(Cl)] [42], monoclinic [Pt{η3-Ph2P(C14H7)PPh2}(Cl)] [43], monoclinic [Pt{η3-Ph2P(C8H7)PPh2}(Cl)]CH3CN [44], orthorhombic [Pt{η3-Ph2P(C18H11O8)PPh2}(Cl)]CH3CN [44], orthorhombic [Pt{η3-Ph2P(C18H11O8)PPh2}(Cl)]CH2Cl2 [45], and monoclinic [Pt{η3-Pri2P(C20H11)PPri2}(Cl)](CH3CN)2 [46], a Cl anion completed inner coordination spheres around each Pt(II) atom (PtP1C1P2Cl).
A Br anion is involved in two monoclinic complexes, [Pt{η3-Ph2P(C8H7)PPh2}(Br)] [57] and [Pt{η3-But2P(C8H7)PBut2}(Br)] [47].
The total mean PL-L bond distance elongates in the following sequences:
Pt (η3-P1C1P2)(Y), Y = OL, NL, C2L Cl, Br (31 examples): Pt–C1: (trans to Y): 2.001 (3,8) Å (N) < 2.027 (2,8) Å (O) ~ 2.027 (2,6) Å (Br) < 2.031 (2,12) Å (Cl) < 2.049 (2) Å (C2); Pt–Y: (trans to C1): 2.065 (7,12) Å (C2) < 2.085 (2,12) Å (N) < 2.132 (2,9) Å (O) < 2.400 (2,16) Å (Cl) < 2.467 (1,10) Å (Br); Pt–P1,2: (mutually trans) is 2.75 (2,12) Å.

2.4. Pt(η3–P1S1P2)(Y), (Y = CH3 (x1), Cl (x2), P3Ph3 (x2), I (x1))

There are six complexes in which each heterotridentate ligand creates a P1C2S1C2P2 metallocycle. Monoclinic [Pt{η3-Ph2P(C6H4)S(=O)(C6H4)PPh2}(CH3)]PF6.CH3CN [48] (at 100 K; Figure 3) is the only example with a (PtP1S1P2C) chromophore. In monoclinic [Pt{η3-Ph2P(C6H4)S(=O)(C6H4)PPh2}(Cl)]PF6.CH3CN [48] and triclinic [Pt{η3-Ph2P(CH2)2S(=O)(CH2)2PPh2}(Cl)]ClO4 [49], the Cl anion completed a square planar geometry (PtP1S1P2Cl). The structural data are summarized in Table 3. The chemical structures and practical applications of these particular complexes are presented in Table S3.
In triclinic [Pt{η3-Ph2P(C6H4)S(=O)(C6H4)PPh2}(P3Ph3)]0.5.CH2Cl [48] (at 100 K) and orthorhombic [Pt{η3-Ph2P(CH2)2S(CH2)2PPh2}(P3Ph3)]ClO4 [50] (at 100 K), the P3Ph3 are involved (PtP1S1P2P3).
In another triclinic [Pt{η3-Ph2P(C23H28S)PPh2}(I)].1.74 CH2Cl2 [51] (at 150 K), the I anion is involved (PtP1S1P2I).
The total mean PL-L bond distance elongates in the sequences:
Pt (η3-P1S1P2)(Y), Y = CL, Cl, P3L, I (6 examples): Pt–S1: (trans to Y): 2.187 (2,5) Å (Cl) < 2.256 (2) Å (I) < 2.268 (2) Å (C) < 2.328 (2,15) Å (P3); Pt–Y: (trans to S1): 2.093 (2) Å (C) < 2.285 (2,3) Å (P3) < 2.317 (2,5) Å (Cl) < 2.510 (1) Å (I); Pt–P1,2: (mutually trans) is 2.300 (4,30) Å.

2.5. Pt(η3–P1Si1P2)(Y), (Y = H (x2), OL (x1), NL (x1), CL (x1), Cl (x5), P3L (x1))

There are fourteen complexes in which each heterotridentate ligand creates a pair of “equal” five-membered metallocyclic rings with a common Si1 atom of the P1C2Si1C2P2 type. The structural data are summarized in Table 3. The chemical structures and practical applications of these particular complexes are presented in Table S3. In two monoclinic [Pt{η3-cy2P(C6H4)Si(Me)(C6H4)Pcy2}(H)].0.5 pentane [52] (at 150 K) and [Pt{η3-cy2P(C6H4)Si(Me)(C6H4)Pcy2}(H)].1.25 pentane [52] (at 93 K), hydride completed a square planar geometry (PtP1Si1P2H).
Triclinic [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(OEt2)]{B(C6F5)3 (CH2Ph)}.OEt2 [53] (Figure 4) is the only example with a monodentate OEt2 ligand (PtP1Si1P2O).
In another triclinic [Pt{η3-Pri2P1(C6H4)Si1(C6H4PPri2)(C6H4)P2Pri2}(NC5H5)]B(C8H3F6)4 [58] (at 100 K), a monodentate NC5H5 is involved (PtP1Si1P2N).
In the following four complexes: triclinic [Pt{η3-cy2P(C6H4)Si(Me)(C6H4)Pcy2}(Ph)]OEt2 [53] (at 173 K), triclinic [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(CH2Ph)]CH2Cl2 [53] (at 193 K), triclinic [Pt{η3-Pri2P)(C6H4)Si(OH)(C6H4)PPri2)}(CO)]B(C6F5)4 [54] (at 120 K), and orthorhombic [Pt{η3-Pri2P(C6H4)Si(H)(C6H4)PPri2}(mes)] [55] (at 110 K), monodentate CL ligands are involved (PtP1Si1P2C).
In the following five complexes: monoclinic [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(Cl)] [53] (at173 K), orthorhombic [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(ClAlCl3)](C6H5F)2 [53] (at 193 K), monoclinic [Pt{η3-Pri2P(C6H4)Si(OH)(C6H4)PPri2}(Cl)] [54] (at 120 K), monoclinic [Pt{η3-Pri2P(C6H4)Si(H)(C6H4)Pcy2}(Cl)] [55] (at 110 K), and monoclinic [Pt{η3-cy2P(C6H4)Si(Me)(C6H4)Pcy2}(Cl)] [56] (at 110 K), tridentate P1Si1P2 with Cl anions construct inner coordination spheres around each Pt(II) atom (PtP1Si1P2Cl).
The total mean PL-L bond distance elongates in the following sequences:
Pt (η3-P1Si1P2)(Y), Y = H, OL, NL, CL, Cl, P3L (19 examples): Pt–Si1: (trans to Y): 2.276 (2) Å (O) < 2.279 (2,6) Å (Cl) < 2.315 (2) Å (N) < 2.331 (2,5) Å (H) < 2.339 (2,17) Å (C) < 2.369 (2) Å (P3); Pt–Y: 1.51 (1,2) Å (H) < 2.122 (2,6) Å (C) < 2.222 (2) Å (N) < 2.282 (2) Å (O) < 2.316 (2) Å (P3) < 2.451 (2,13) Å (Cl); Pt–P1,2: (mutually trans) is 2.289 (2,32) Å.
The structure of monoclinic [Pt{η3-Ph2P1(C6H4)Si1(Me)(C6H4)P2Ph2}(P3Ph3)] [59] (at 123 K) is shown in Figure 5. In a distorted trigonal–pyramidal geometry, three P atoms construct a trigonal plane, and the Si1 atom occupies a pyramid. The heterotridentate P1Si1P2 ligand forms a pair of “equal” five-membered metallocyclic rings with a common Si1 atom of the P1C2Si1C2P2 type, with the mean P1–Pt–Si1/Si1–Pt–P2 bite angles of 83.3 (1,8)°. The values for the remaining angles are 120.7 (2)° (P1–Pt–P2), 119.6 (2,2.4)° (P1–Pt–P3/P3–Pt–P2), and 108.9 (2)° (Si1–Pt–P3). The Pt-L bond distance elongates in the following order: 2.290 (2.11) Å (Pt–P1, Pt–P2) < 2.318 (2) Å (Pt–P3) < 2.369 (2) Å (Pt–Si1). This is the only example of such geometries.

3. Conclusions

This review evaluates seventy Pt(II) complexes in which inner coordination spheres are constructed by heterotridentate organodiphosphines (η3−P1X1P2) (Y), (X1 = OL, NL, CL, SL or SiL) with variable monodentate donor ligands. These complexes crystallized in five crystal systems: trigonal (×1), tetragonal (×1), orthorhombic (×11), triclinic (×18), and monoclinic (×39).
The structures of the complexes are similar. Each heterotridentate organodiphosphine ligand creates a pair of “equal” five-membered metallocyclic rings with a common X1 atom of the P1C2X1C2P2 type.
The sum of four (Pt-P(x2) + Pt-X1 + Pt-Y) bond distances grows with the covalent radius of the Y atom in the following sequences:
PtP1N1P2Y: 8.65 Å (Y = N) < 8.76 Å (C) < 8.91 Å (Cl) < 9.00 Å (P3);
PtP1C1P2Y: 8.64 Å (Y = N) < 8.66 Å (C2) < 8.98 Å (Cl) < 9.05 Å (Br);
PtP1S1P2Y: 8.91 Å (Y = C) < 9.13 Å (Cl) < 9.20 Å (P3) < 9.39 Å (I);
PtP1Si1P2Y: 8.35 Å (Y = H) < 9.15 Å (O) < 9.17 Å (N) < 9.30 Å (Cl).
The total mean values of the L-Pt-L bond angles are 83.1 (2,2.7)° (P1-Pt-X1/X1-Pt-P2), 163.2 (2,3.5)° (P1-Pt-P2), 96.2 (2,2.5) ° (P1-Pt-Y/Y-Pt-P2), and 175.7° (2,3.9) (X1-Pt-Y).
There are two exceptions—PtP1C1P2O and PtP1Si1P2C—with the sums of 8.71 and 9.03 Å that do not follow the covalent radius of the Y atom. There are two reasons for this discrepancy: trans-influence of C1 vs. O and Si1 vs. C, and the types of ligand H2O and OMe in the former and CO and CN in the latter.
It is well known that in four-coordinated Pt(II) atoms, there is a preference for square planar geometry with different degrees of distortion. A simple metric to assess the molecular shape and degree of distortion is the parameter Τ4 for square planar geometry according to the following equation: Τ4 = 360 − (α + β)/141 [60]. The value of Τ4 for a perfect square planar geometry is zero. The degree of distortion for a square planar geometry around Pt(II) atoms grows in the following sequences (according to Y):
Pt(η3−P1S1P2)(Y):0.105 (Y = C2) < 0.120(I) < 0.138 (Cl) < 0.143 (P3);
The total mean value of τ4 is 0.125;
Pt(η3−P1C1P2)(Y):0.130(Cl) < 0.133(C2) < 0.138 (Br) < 0.146 (O2) < 0.166 (N2);
The total mean value of τ4 is 0.143;
Pt(η3−P1N1P2)(Y):0.115(Cl) < 0.125(N2) < 0.140 (C2) < 0.204 (P3);
The total mean value of τ4 is 0.146;
Pt(η3−P1C1P2)(Y):0.163 (P3);
Pt(η3−P1Si1P2)(Y):0.115(O2) < 0.169(H) < 0.171 (N2) < 0.176 (Cl) < 0.186 (C2);
The total mean value of τ4 is 0.163.
The trans-α-X1-Pt-Y and β-P1-Pt-P2 bond angles are responsible for distortion of square planar geometry around Pt(II) atoms. While the donor atoms of α-X1-Pt-Y angles exhibit a wide variety of soft (H, C, S, P, Si, I), borderline (Br), and hard (O, N, Cl), the donor atoms of β-P1-Pt-P2 angles are only soft. The soft atom ligand has a larger trans-effect than the borderline or hard ones. The trans-effect on a Pt bond distance also affects the L-Pt-L bond angles.
If we take trans-effect into account, the respective trans-α-X1-Pt-Y and β-P1-Pt-P2 angles open, and the distortion (τ4) diminishes in the order (means values) (Table 4).
Structural information about platinum complexes is a prerequisite to properly understanding their roles in chemistry, biology, medicine, etc. Hence, this structural study provides relevant and rationally classified data on the evaluated group of Pt(II) complexes (Pt(η3–P1C2X1C2P2)(Y)), which is helpful for the proper interpretation of results from the areas where such complexes were applied (here, mainly toward their catalytic activity).

Supplementary Materials

The following are available at https://www.mdpi.com/article/10.3390/cryst13091340/s1, Table S1: Structures and applications of Pt{η3–P1X1P2}(Y), (X1 = O1,N1), (Y = C2L,N2L,Cl,P3L) complexes; Table S2: Structures and applications of Pt{η3-P1C1P2}(Y), (Y = O2L,N2L,CL,Cl,Br) complexes; Table S3: Structures and applications of Pt(η3–P1X1P2)(Y), (X1 = S1 or Si1) (Y = C2L,Cl,P3L,I,H,O2L) complexes.

Author Contributions

Conceptualization, M.M. and P.M.; methodology M.M. and P.M.; writing—original draft preparation, M.M. and P.M.; data curation, M.M.; writing—review and editing, V.M.; supervision, M.M. and P.M.; funding acquisition, P.M. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the following projects: VEGA 1/0514/22 and VEGA 1/0146/23.

Data Availability Statement

The data supporting the reported results can be requested from author M.M.

Acknowledgments

This work was supported by the Faculty of Pharmacy, Comenius University Bratislava.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

But2P(C11H16N3)PBut2(N,N’-3,3,5 triethylpyridine-2,6-(1H,2H)-diylidene)bis(di-t-butyl(phosphinusamidato)
But2P(C12H9)PBut2(1,3-bis(di-t-butylphosphinomethyl)-2-naphtyl
But2P(C7H6N)PBut2(6-((di-t-butylphosphino)methyl-2-((di-t-butyl phosphino)methylene)-1,2-dihydropyridine-1-yl)
But2P(C7H7N)PBut2(2,6-bis(di-t-butylphosphino)methyl)pyridine
(CF3)2P(C8H7)P(CF3)2(2,6-bis(bis(trifluoromethyl)phosphinomethyl) phenyl)
2–C18H28)P(C7H6N)P(η1–C18H24)(2-((5,7-di-t-butyl-3,3-dimethyl-2,3-dihydro-14-phosphindol-1-yl)methylene)-6-(((2,4,6-tri-t-butylphenylphosphino)methyl)-1,2-dihydro pyridinyl) undecachloro-carba-undecaborane
cy2P(C6H4)Si(Me)(C6H4)Pcy2((methylsilanediyl)di-2,1-phenylene)bis(dicyclohexylphosphine))
Pcy3tricyclohexylphosphino
Ph2P(C12H8N)PPh2(2,2’-bis (diphenylphosphino)diphenylamido)
Ph2P(C14H7)PPh2(1,8-bis(diphenylphosphino)-9-anthryl)
Ph2P(C14H7O2)PPh2(1,8-bis(diphenylphosphino)-9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)
Ph2P(C15H12O)PPh2((9,9-dimethyl-9H-xanthene-4,5-diyl)bis (diphenylphosphine)-diphenyl(2-pyridyl) phosphine
Ph2P(C18H19O8)PPh2(2,6-bis(1-(diphenylphosphino)-3-methoxy-2-(methoxycarbonyl)-3-oxopropylphenyl)
Ph2P(C20H11O2)PPh2(13,16-bis(diphenylphosphino)-3,6-dihydroxypentacyclo [6.6.6.O2,7.O9,14.O15,20]icosa-2,4,6,9,11,13,15,17,19-nonaen-1-yl)
Ph2P(C20H13O4)PPh2(3,13-bis(diphenylphosphino)-15,16-bis(methoxy-carbonyl)tetracyclo[6.6.6.2 O2,7.O9,14]hexadeca-2,4,6,9,11,13,15-heptaen-1-yl)
Ph2P(C23H28S)PPh2((9,9-dimethyl-2,7-bis(t-butyl)-9H-thioxantene-4,5-diyl)bis(diphenylphosphine)
Ph2P(C6H4)S(=O)(C6H4)PPh2((sulfinydi-2,1-phenylene)bis(diphenylphosphine)
Ph2P(C8H7)PPh2(2,6-bis((diphenylphosphino)methyl)phenyl)
Ph2P(CH2)2S(CH2)2PPh2(bis(2-(diphenylphosphino)ethyl)sulfide)
PPh3triphenylphosphine
Pri2P (C20H11)PPri2(3,13-bis(diisopropylphosphino)-pentacyclo [6.6.6.O2,7.O9,14.O15,20]icosa-2,4,6,9,11,13,15,17,19-heptaen-1-yl)
Pri2P(C12H6F2N)PPri2 (2-(diisopropylphosphino)-N-(2-(diisopropyl-phosphino)-4-fluorophenyl)-4-fluoroanilinato)
Pri2P(C12H7F2N)PPri2 (2-(diisopropylphosphino)-N-(2-(diisopropyl-phosphino)-4-fluorophenyl)-4-fluoroaniline)
Pri2P(C14H12N)PPh2(bis(2-(di-isopropylphosphino)-4-methyl-phenyl)(2-((diphenylphosphino)-4-methyl-phenyl)amide)
Pri2P(C6H4)Si(C12H46P)(C6H4)PPri2(tris(2-(diisopropylphosphino)phenyl)silyl)
Pri2P(C6H4)Si(H)(C6H4)PPri2((silanediyldi-2,1-phenylene)bis(diiso-propyl phosphine))

References

  1. Rosenberg, B.; Van Camp, L.; Trasko, Y.E.; Mansour, V.H. Platinum Compounds: A New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef]
  2. Ashiq, M.; Danish, M.; Mohsin, M.; Bari, S.; Mukhtar, F. Chemistry of Platinum and Palladium Metal Complexes in Homogeneous and Heterogeneous Catalysis: A Mini Review. Int. J. Sci. Basic. Appl. Res. 2013, 7, 50–61. Available online: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=article&op=view&path%5B%5D=1134 (accessed on 25 May 2023).
  3. Chaaban, M.; Zhou, C.; Lin, H.; Chyic, B.; Ma, B. Platinum(ii) binuclear complexes: Molecular structures, photophysical properties, and applications. J. Mater. Chem. C 2019, 7, 5910–5924. [Google Scholar] [CrossRef]
  4. Santos, T.M.R.; Andolpho, G.A.; Tavares, C.A.; Gonçalves, M.A.; Ramalho, T.C. Improving the Path to Obtain Spectroscopic Parameters for the PI3K—(Platinum Complex) System: Theoretical Evidences for Using 195Pt NMR as a Probe. Magnetochemistry 2023, 9, 89. [Google Scholar] [CrossRef]
  5. Horiuchi, S.; Umakoshi, K. Recent advances in pyrazolato-bridged homo- and heterometallic polynuclear platinum and palladium complexes. Coord. Chem. Rev. 2023, 476, 214924. [Google Scholar] [CrossRef]
  6. Melník, M.; Mikuš, P. Organomonophosphines in PtP2Cl2 Derivatives: Structural Aspects. Rev. Inorg. Chem. 2015, 35, 179–189. [Google Scholar] [CrossRef]
  7. Melník, M.; Mikuš, P. Organodiphosphines in PtP2X2 (X = As, Ge or Te) Derivatives—Structural Aspects. Main. Group. Chem. 2020, 43, 132–137. [Google Scholar] [CrossRef]
  8. Melník, M.; Mikuš, P. Distortion Isomers of Cis-PtP2X2 and Cis-PtP2XY Derivatives—Structural Aspects. Rev. Inorg. Chem. 2020, 40, 153–165. [Google Scholar] [CrossRef]
  9. Albrecht, M.; van Koten, G. Platinum Group Organometallics Based on “Pincer” Complexes: Sensors, Switches, and Catalysts. Angew. Chem. Int. Ed. 2001, 40, 3750. [Google Scholar] [CrossRef]
  10. van der Boom, M.E.; Milstein, D. Cyclometalated Phosphine-Based Pincer Complexes:  Mechanistic Insight in Catalysis, Coordination, and Bond Activation. Chem. Rev. 2003, 103, 1759. [Google Scholar] [CrossRef]
  11. Rybtchinski, B.; Milstein, D. Metal Insertion into C−C Bonds in Solution. Angew. Chem. Int. Ed. 1999, 38, 870. [Google Scholar] [CrossRef]
  12. Singleton, J.T. The Uses of Pincer Complexes in Organic Synthesis. Tetrahedron 2003, 59, 1837–1857. [Google Scholar] [CrossRef]
  13. Vigalok, A.; Milstein, D. Advances in metal chemistry of quinonoid compounds: New types of interactions between metals and aromatics. Acc. Chem. Res. 2001, 34, 798–807. [Google Scholar] [CrossRef] [PubMed]
  14. Milstein, D. Challenging metal-based transformations. From single-bond activation to catalysis and metallaquinonoids. Pure Appl. Chem. 2003, 75, 445–460. [Google Scholar] [CrossRef]
  15. Jensen, C.M. Iridium PCP pincer complexes: Highly active and robust catalysts for novel homogeneous aliphatic dehydrogenations. Chem. Commun. 1999, 2443–2449. [Google Scholar] [CrossRef]
  16. Gandelman, M.; Konstantinovski, L.; Rozenberg, H.; Milstein, D. Interplay between solvent and counteranion stabilization of highly unsaturated rhodium(III) complexes: Facile unsaturation-induced dearomatization. Chem. Eur. J. 2003, 9, 2595–2602. [Google Scholar] [CrossRef]
  17. Melník, M.; Mikuš, P. Tetradentate organophosphines in Pt(η4–A4L) (A = P4, P3Si), P2X2 (X2 = N2, S2, C2), (PX3) (X3 = N3, N2O): Structural aspects. Main Group Met. Chem. 2021, 44, 270–280. [Google Scholar] [CrossRef]
  18. Melník, M.; Mikuš, P. Heterotridentate organophosphines in Pt(κ3–P1C1P2)(X), (X=H, OL, NL, CL, Cl, Br or I) and Pt(κ3–P1P2C1)(Cl) derivatives structural aspects. J. Mol. Struct. 2023, 1276, 134768. [Google Scholar] [CrossRef]
  19. Lenero, K.Q.A.; Guari, Y.; Kamer, P.C.J.; van Leeuwen, P.W.N.M.; Donnadiere, B.; Sabo-Etienne, S.; Chaudret, B.; Lutz, M.; Spek, A.L. Heterolytic activation of dihydrogen by platinum and palladium complexes. Dalton Trans. 2013, 42, 6495–6512. [Google Scholar] [CrossRef]
  20. Liang, L.C.; Lin, J.M.; Lee, W.Y. Benzene C–H Activation by Platinum(Ii) Complexes of Bis(2-Diphenylphosphinophenyl)Amide. Chem. Commun. 2005, 19, 2462–2464. [Google Scholar] [CrossRef]
  21. Feller, M.; Ben-Ari, E.; Iron, M.A.; Diskin-Posner, Y.; Leitus, G.; Shimon, L.J.W.; Konstantinovski, L.; Milstein, D. Cationic, Neutral, and Anionic PNP Pd II and Pt II Complexes: Dearomatization by Deprotonation and Double-Deprotonation of Pincer Systems. Inorg. Chem. 2010, 49, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
  22. Carlisle, S.; Matta, A.; Valles, H.; Bracken, J.B.; Miranda, M.; Yoo, J.; Hahn, C. Addition to Alkynes Promoted by a Dicationic Platinum(II) Complex. Organometallics 2011, 30, 6446–6457. [Google Scholar] [CrossRef]
  23. Hahn, C. Structural Investigations of Platinum(II) Styrene and Styryl Complexes and Mechanistic Study of Vinylic Deprotonation. Organometallics 2010, 29, 1331–1338. [Google Scholar] [CrossRef]
  24. DeMott, J.C.; Bhuvanesh, N.; Ozerov, O.V. Frustrated Lewis Pair-like Splitting of Aromatic C–H Bonds and Abstraction of Halogen Atoms by a Cationic [(FPNP)Pt]+. Species. Chem. Sci. 2013, 4, 642–649. [Google Scholar] [CrossRef]
  25. Cucciolito, M.E.; D’Amora, A.; Tuzi, A.; Vitagliano, A. Catalytic Hydroarylation of Olefins Promoted by Dicationic Platinum(II) and Palladium(II) Complexes. The Interplay of C−C Bond Formation and M−C Bond Cleavage. Organometallics 2007, 26, 5216–5223. [Google Scholar] [CrossRef]
  26. Lansing, R.B.; Goldberg, K.I.; Kemp, R.A. Unsymmetrical RPNPR′ Pincer Ligands and Their Group 10 Complexes. Dalton Trans. 2011, 40, 8950–8958. [Google Scholar] [CrossRef]
  27. Sacco, A.; Vasapollo, G.; Nobile, C.F.; Piergiovanni, A.; Pellinghelli, M.A.; Lanfranchi, M. Syntheses and Structures of 2-Diphenylphosphinomethylenide-6-Diphenylphosphinomethylenepyridine Complexes of Palladium(II) and Platinum(II); Crystal Structures of [PtCl2-(CHPPH2)-6-(CH2PPh2)Pyridine] and [Pd(COOMe)2-(CHPPh2)-6-(CH2PPh2)Pyridine]. J. Organomet. Chem. 1988, 356, 397–409. [Google Scholar] [CrossRef]
  28. Takeuchi, K.; Taguchi, H.; Tanigawa, I.; Tsujimoto, S.; Matsuo, T.; Tanaka, H.; Yoshizawa, I.K.; Ozawa, F. A Square-Planar Complex of Platinum(0). Angew. Chem. Int. Ed. Engl. 2016, 55, 15347–15350. [Google Scholar] [CrossRef]
  29. Taguchi, H.; Chang, Y.H.; Takeuchi, K.; Ozawa, F. Catalytic Synthesis of an Unsymmetrical PNP-Pincer-Type Phosphaalkene Ligand. Organometallics 2015, 34, 1589–1596. [Google Scholar] [CrossRef]
  30. Adams, J.J.; Arulsamy, N.; Roddick, D.M. Acceptor Pincer Coordination Chemistry of Platinum: Reactivity Properties of (CF3 PCP)Pt(L) + (L = NC5F5, C2H4). Organometallics 2009, 28, 1148–1157. [Google Scholar] [CrossRef]
  31. Arunachalampillai, A.; Loganathan, N.; Wendt, O.F. Carboxylation of Pincer PCP Platinum Methoxide Complexes under Formation of Metalla Carbonates. Polyhedron 2012, 32, 24–29. [Google Scholar] [CrossRef]
  32. Musa, S.; Shpruhman, A.; Gelman, D. New PC(sp3)P pincer complexes of platinum and palladium. J. Organomet. Chem. 2012, 699, 92–95. [Google Scholar] [CrossRef]
  33. De-Botton, S.; Romm, R.; Bensoussan, G.; Hitrik, M.; Musa, S.; Gelman, D. Coordination Versatility of P-Hydroquinone-Functionalized Dibenzobarrelene-Based PC(Sp3)P Pincer Ligands. Dalton Trans. 2016, 45, 16040–16046. [Google Scholar] [CrossRef] [PubMed]
  34. Jia, Y.X.; Yang, X.Y.; Tay, W.S.; Li, Y.; Pullarkat, S.A.; Xu, K.; Hirao, H.; Leung, P.H. Computational and Carbon-13 NMR Studies of Pt–C Bonds in P–C–P Pincer Complexes. Dalton Trans. 2016, 45, 2095–2101. [Google Scholar] [CrossRef] [PubMed]
  35. Adams, J.J.; Lau, A.; Arulsamy, N.; Roddick, D.M. Synthesis and Platinum Coordination Chemistry of the Perfluoroalkyl Acceptor Pincer Ligand, 1,3-(CH2P(CF3)2)2C6H4. Inorg. Chem. 2007, 46, 11328–11334. [Google Scholar] [CrossRef]
  36. Vuzman, D.; Poverenov, E.; Diskin-Posner, Y.; Leitus, G.; Shimon, L.J.W.; Milstein, D. Reactivity and Stability of Platinum(Ii) Formyl Complexes Based on PCP-Type Ligands. The Significance of Sterics. Dalton Trans. 2007, 48, 5692–5700. [Google Scholar] [CrossRef]
  37. Schwartsburd, L.; Poverenov, E.; Shimon, L.J.W.; Milstein, D. Naphthyl-Based PCP Platinum Complexes. Nucleophilic Activation of Coordinated CO and Synthesis of a Pt(II) Formyl Complex. Organometallics 2007, 26, 2931–2936. [Google Scholar] [CrossRef]
  38. Spek, A.L.; Dani, P.; van Koten, G. Crystal Structure of [Pt{η3-Ph2P(C8H7)PPh2}(η1-C12H19N2)]. Private Communication CCDB, IXICEX (2004). Available online: https://www.ccdc.cam.ac.uk/ (accessed on 28 April 2023).
  39. Hughes, R.P.; Williamson, A.; Incarvito, C.D.; Rheingold, A.L. Synthesis and Molecular Structure of a Perfluoroalkyl Complex of Platinum Containing a PCP Pincer Ligand. Organometallics 2001, 20, 4741–4744. [Google Scholar] [CrossRef]
  40. Albrecht, M.; Dani, P.; Lutz, M.; Spek, A.L.; van Koten, G. Transcyclometalation Processes with Late Transition Metals: C-aRyl−H Bond Activation via Noncovalent C−H···Interactions. J. Am. Chem. Soc. 2000, 122, 11822–11833. [Google Scholar] [CrossRef]
  41. Olsson, D.; Arunachalampillai, A.; Wendt, O.F. Synthesis and Characterisation of PCsp3P Phosphine and Phosphinite Platinum(Ii) Complexes. Cyclometallation and Simple Coordination. Dalton Trans. 2007, 46, 5427–5433. [Google Scholar] [CrossRef]
  42. Poverenov, E.; Leitus, G.; Shimon, L.J.W.; Milstein, D. C-Metalated Diazoalkane Complexes of Platinum Based on PCP- and PCN-Type Ligands. Organometallics 2005, 24, 5937–5944. [Google Scholar] [CrossRef]
  43. Fischer, S.; Wendt, O.F. {2,6-Bis[(Diphenylphosphino)Methyl]phenyl} chloroplatinum(II). Acta Cryst. Sect. E Struct. Rep. Online 2004, 60, m69–m70. [Google Scholar] [CrossRef]
  44. Hu, J.; Xu, H.; Nguyen, M.H.; Yip, J.H.K. Photooxidation of a Platinum-Anthracene Pincer Complex: Formation and Structures of Pt II -Anthrone and -Ketal Complexes. Inorg. Chem. 2009, 48, 9684–9692. [Google Scholar] [CrossRef] [PubMed]
  45. Yang, X.Y.; Tay, W.S.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Versatile Syntheses of Optically Pure PCE Pincer Ligands: Facile Modifications of the Pendant Arms and Ligand Backbones. Organometallics 2015, 34, 1582–1588. [Google Scholar] [CrossRef]
  46. Azerraf, C.; Gelman, D. New Shapes of PC(Sp3)P Pincer Complexes. Organometallics 2009, 28, 6578–6584. [Google Scholar] [CrossRef]
  47. Williams, B.S.; Dani, P.; Lutz, M.; Spek, A.L.; van Koten, G. Development of the First P-Stereogenic PCP Pincer Ligands, Their Metallation by Palladium and Platinum, and Preliminary Catalysis. Helv. Chim. Acta 2001, 84, 3519–3530. [Google Scholar] [CrossRef]
  48. Suess, D.L.M.; Peters, J.C. Late-Metal Diphosphinosulfinyl S(O)P 2 Pincer-Type Complexes. Organometallics 2012, 31, 5213–5222. [Google Scholar] [CrossRef]
  49. Siah, S.Y.; Leung, P.H.; Mok, K.F. Palladium(II) and Platinum(II) Complexes with a Novel P—S(O)—P Tridentate Ligand. Polyhedron 1994, 13, 3253–3255. [Google Scholar] [CrossRef]
  50. Andreasen, L.V.; Hazell, A.; Wernberg, O. [Bis(2-Diphenylphosphinoethyl) Sulfide-κ3P,S,P′](Triphenylphosphine-κP)Platinum(II) Diperchlorate Acetone Solvate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2002, 58, m385–m387. [Google Scholar] [CrossRef]
  51. Emslie, D.J.H.; Harrington, L.E.; Jenkins, H.A.; Robertson, C.M.; Britten, J.F. Group 10 Transition-Metal Complexes of an Ambiphilic PSB-Ligand: Investigations into η3(BCC)-Triarylborane Coordination. Organometallics 2008, 27, 5317–5325. [Google Scholar] [CrossRef]
  52. Suh, H.W.; Balcells, D.; Edwards, A.J.; Guard, L.M.; Hazari, N.; Mader, E.A.; Mercado, B.Q.; Repisky, M. Understanding the Solution and Solid-State Structures of Pd and Pt PSiP Pincer-Supported Hydrides. Inorg. Chem. 2015, 54, 11411–11422. [Google Scholar] [CrossRef] [PubMed]
  53. Mitton, S.J.; McDonald, R.; Turculet, L. Synthesis and Characterization of Neutral and Cationic Platinum(II) Complexes Featuring Pincer-like Bis(Phosphino)Silyl Ligands: Si−H and Si−Cl Bond Activation Chemistry. Organometallics 2009, 28, 5122–5136. [Google Scholar] [CrossRef]
  54. Korshin, E.E.; Leitus, G.; Shimon, L.J.W.; Konstantinovski, L.; Milstein, D. Silanol-Based Pincer Pt(II) Complexes: Synthesis, Structure, and Unusual Reactivity. Inorg. Chem. 2008, 47, 7177–7189. [Google Scholar] [CrossRef] [PubMed]
  55. DeMott, J.C.; Gu, W.; McCulloch, B.J.; Herbert, D.E.; Goshert, M.D.; Walensky, J.R.; Zhou, J.; Ozerov, O.V. Silyl–Silylene Interplay in Cationic PSiP Pincer Complexes of Platinum. Organometallics 2015, 34, 3930–3933. [Google Scholar] [CrossRef]
  56. Brost, R.D.; Bruce, G.C.; Joslin, F.L.; Stobart, S.R. Phosphinoalkylsilyl Complexes. 12. Stereochemistry of the Tridentate Bis(Diphenylphosphinopropyl)Silyl (BiPSi) Framework: Complexation That Introduces “Face Discrimination” at Coordinatively Unsaturated Metal Centers. X-Ray Crystal and Molecular Structure. Organometallics 1997, 16, 5669–5680. [Google Scholar] [CrossRef]
  57. Bachechi, F. X-Ray Structural Analysis of NiII, PdII, and PtII Complexes with the Potentially Tridentate Ligand 1,3-Bis(Diphenylphosphinomethyl)Benzene, 1,3-C6H4(CH2PPh2)2. Struct. Chem. 2003, 14, 263–269. [Google Scholar] [CrossRef]
  58. Tsay, C.; Mankad, N.P.; Peters, J.C. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes. J. Am. Chem. Soc. 2010, 132, 13975–13977. [Google Scholar] [CrossRef]
  59. Takaya, J.; Iwasawa, N. Reaction of Bis(o-Phosphinophenyl)Silane with M(PPh3)4(M = Ni, Pd, Pt): Synthesis and Structural Analysis of H2-(Si–H) Metal(0) and Pentacoordinate Silyl Metal(Ii) Hydride Complexes of the Ni Triad Bearing a PSiP-Pincer Ligand. Dalton Trans. 2011, 40, 8814–8821. [Google Scholar] [CrossRef]
  60. Yang, L.; Powell, D.R.; Houser, R.P. Structural Variation in Copper(i) Complexes with Pyridylmethylamide Ligands: Structural Analysis with a New Four-Coordinate Geometry Index, Τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef]
Figure 1. Structure of [Pt{η3-Ph2P(C12H8N)PPh2}(py)] [20].
Figure 1. Structure of [Pt{η3-Ph2P(C12H8N)PPh2}(py)] [20].
Crystals 13 01340 g001
Figure 2. Structure of [Pt{η3-Pri2P(C20H11)PPri2}(OOCCF3)] [32].
Figure 2. Structure of [Pt{η3-Pri2P(C20H11)PPri2}(OOCCF3)] [32].
Crystals 13 01340 g002
Figure 3. Structure of [Pt{η3-Ph2P(C6H4)S(=O)(C6H4)PPh2}(CH3)] [49].
Figure 3. Structure of [Pt{η3-Ph2P(C6H4)S(=O)(C6H4)PPh2}(CH3)] [49].
Crystals 13 01340 g003
Figure 4. Structure of [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(OEt2)] [53].
Figure 4. Structure of [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(OEt2)] [53].
Crystals 13 01340 g004
Figure 5. Structure of [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(PPh3)] [59].
Figure 5. Structure of [Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2}(PPh3)] [59].
Crystals 13 01340 g005
Table 1. Crystallographic and structural data for Pt{η3–P1X1P2}(Y), (X1 = O1, N1), (Y = C2L, N2L, Cl, P3L) complexes a.
Table 1. Crystallographic and structural data for Pt{η3–P1X1P2}(Y), (X1 = O1, N1), (Y = C2L, N2L, Cl, P3L) complexes a.
ComplexCryst. cl.
Space gr.
Z
a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)
Chromophore
(Chelate Rings)
τ4 b
Pt-L c
(Å)
L-Pt-L c
(˚)
Ref.
[Pt{η3-Ph2P(C15H12O) PPh2} {η1-P3(C5H4N) (Ph)2}].2CF3SO3.0.5H2O (at 150 K)m
C2/c
4
42.762(0)
12.161(0)
23.995(0)
121.60(0)PtP2OP
(P1C2O1C2P2)
0.164
P1,P2 2.302(-,11)
O1 2.189
P3 2.239
P1,2,O1 81.6(-,7) d
P1,P2 162.2
P1,2,P3 98.5(-,1,7)
O1,P3 174.7(2)
[19]
[Pt{η3-Ph2P (C12H8N). PPh2-P1,N1,P2}(py)]. CF3SO3.toluenem
P21/n
4
15.114(0)
17.695(0)
16.901(0)
105.98(0)PtP2NN
(P1C2N1C2P2)
0.125
P1 2.294
P2 2.273
N1 2.024
py, N2 2.056
P1,2,N1 83.3(-,7) d
P1,P2 166.6
P1,2,N2 96.1(-,3.0)
N1,N2 175.6
[20]
[Pt{η3-Ph2P(C2H8N)PPh2-P1,N1,P2}(CH3)]or
Fdd2
4
9.961(0)
18.601(0)
32.725(0)
PtP2NC
(P1C2N1C2P2)
0.110
P1 2.274
P2 2.274
N1 2.093
C 2.110
P1,2,N1 82.3 d
P1,P2 164.6
P1,2,C 97.7
N1,C 180.0
[20]
[Pt{η3-But2P(C7H7N) PBut2-P1,N1,P2}
(CH3)]Cl.CHCl3 (at 100 K)
tr
P 1 ¯
2
14.569(0)
15.447(0)
16.237(0)
114.73(0)
99.12(0)
96.40(0)
PtP2NC
(P1C2N1C2P2)
0.128
P1 2.286
P2 2.301
N1 2.108
C 2.057
P1,2,N1 84.0 d
P1,P2 164.4
P1,2,C 96.1(-,1)
N1,C 177.5
[21]
[Pt{η3-But2P(C7H7N)PBut2-P1,N1,P2}
(CH3)]Cl.CHCl3 (at 100 K)
m
P21/c
8
10.976(2)
15.479(3)
30.094(3)
90.71(3)PtP2NC
(P1C2N1C2P2)
0.120
P1 2.295
P2 2.282
N1 2.089
C 2.105
P1,2,N1 83.2(-,4) d
P1,P2 164.6
N1,N2 96.6(-,5)
N1,C 178.3
[21]
[Pt{η3-Ph2P(C7H7N) PPh2-P1,N1,P2}{C(=O) Et}].BF4.0.5CH2Cl2
(at 100 K)
m
P21/n
4
18.173(3)
9.960(1)
21.092(4)
114.94(0)PtP2NC
(P1C2N1C2P2)
0.130
P1 2.279
P2 2.284
N1 2.131
C 2.001
P1,2,N1 81.8(-,4) d
P1,P2 163.6
P1,2,C 98.1(-,1.8)
N1,C 178.0
[22]
[Pt{η3-Ph2P(C7H7N) PPh2-P1,N1,P2} (CH2CHO)].BF4 (at 110 K)tr
P 1 ¯
2
9.198(1)
10.688(1)
16.421(1)
99.77(0)
100.04(0)
97.95(0)
PtP2NC
(P1C2N1C2P2)
0.112
P1 2.269
P2 2.303
N1 2.112
C 2.132
P1,2,N1 83.0(-,2) d
P1,P2 165.9
P1,2,C 97.0(-,1.7)
N1,C 178.1
[22]
[Pt{η3-Ph2P(C7H7N)PPh2-P1,N1,P2} (CH = CHPh)].BF4tr
P 1 ¯
2
12.534(8)
17.101(8)
17.919(8)
70.04(0)
82.64(0)
78.66(0)
PtP2NC
(P1C2N1C2P2)
0.135
P1 2.289
P2 2.309
N1 2.125
C 2.005
P1,2,N1 82.3(-,6) d
P1,P2 164.3
P1,2,C 97.6(-,1.2)
N1,C 176.6
[23]
[Pt{η3-Pri2P(C12H7F2N)PPri2-P1,N1,P2} (C6H4F)].B(C6F4)4 (at 110 K)m
P21/c
4
15.495(2)
18.673(3)
22.444(2)
125.95(0)PtP2NC
(P1C2N1C2P2)
0.171
P1 2.286
P2 2.272
N1 2.126
C 2.015
P1,2,N1 83.0(-,1.2)
P1,P2 163.4
P1,2,C 96.5(-,2.0)
N1,C 172.3
[24]
[Pt{η3-Pri2P(C12H7F2N)PPri2-P1,N1,P2}
(p-tol)].B(C6F5)4 (at 110 K)
m
P21/n
4
15.655(1)
18.868(1)
18.242(1)
98.76(0)PtP2NC
(P1C2N1C2P2)
0.225
P1 2.288
P2 2.270
N1 2.183
C 2.070
P1,2,N1 83.9(-,8)
P1,P2 161.4
P1,2,C 97.4(-,3.5)
N1,C 166.8
[24]
[Pt{η3-Ph2P(C7H7N)PPh2-P1,N1,P2} (C11H15O3)].BF4m
P21/c
4
18.286(2)
11.617(3)
20.683(1)
114.68(1)PtP2NC
(P1C2N1C2P2)
0.130
P1 2.263
P2 2.282
N1 2.097
C 2.157
P1,2,N1 83.0(-,9)
P1,P2 164.9
P1,2,C 97.1(-,1.6)
N1,C 176.6
[25]
[Pt{η3-Ph2P(C12H8N)PPh2}(Cl)].5C6H6m
P21/n
4
17.378(0)
12.705(0)
25.555(0)
104.58(0)PtP2NCl
(P1C2N1C2P2)
0.107
P1,2 2.277(-,7)
N1 2.024
Cl 2.318
P1,2,N1 83.7(-,1)
P1,P2 167.3
P1,2,Cl 96.3(-,1.9)
N1,Cl 177.5
[20]
[Pt{η3-But2P(C7H6N)PBut2}(Cl)]
(at 120 K)
or
Pna21
4
22.499(0)
8.107(0)
14.161(0)
PtP2NCl
(P1C2N1C2P2)
0.102
P1,2 2.296(-,15)
N1 2.021
Cl 2.333
P1,2,N1 84.6(-,3)
P1,P2 169.2
P1,2,Cl 95.3(-,4)
N1,Cl 176.5
[21]
[Pt{η3-But2P(C7H7N)PBut2}(Cl)]Cltrg
P3
6
18.631(3)

14.821(3)
PtP2NCl
(P1C2N1C2P2)
0.092
P1,2 2.302(-,1)
N1 2.030
Cl 2.307
P1,2,N1 84.2(-,3)
P1,P2 168.2
P1,2,Cl 95.8(-,5)
N1,Cl 178.9
[21]
[Pt{η3-Pri2P(C12H6F2N)PPri2} (Cl)].CHB11Cl11 (at 110 K)m
P21/c
4
19.446(20)
15.820(18)
15.256(15)
107.78(1)PtP2NCl
(P1C2N1C2P2)
0.151
P1 2.285
P2 2.304
N1 1.987
Cl 2.297
P1,2,N1 84.2(-,6)
P1,P2 166.7
P1,2,Cl 95.8(-,1.9)
N1,Cl 171.9
[24]
[Pt{η3-Ph2P(C14H12N)PPri2}(Cl)].0.5C6H6
(at 183 K)
m
P21/c
4
9.702(0)
11.526(0)
28.499(1)
100.73(0)PtP2NCl
(P1C2N1C2P2)
0.120
P1,2 2.278(-,5)
N1 2.028
Cl 2.321
P1,2,N1 83.2(-,1.2) d
P1,P2 164.0
P1,2,Cl 96.7(-,1.2)
N1,Cl 179.2
[26]
[Pt{η3-Ph2P(C14H12N) P(cy)2} (Cl)].C6H6
(at 183 K)
tr
P 1 ¯
2
11.322(0)
11.735(0)
15.501(0)
93.81(0)
110.18(0)
93.00(0)
PtP2NCl
(P1C2N1C2P2)
0.135
P1,2 2.282(-,9)
N1 2.047
Cl 2.322
P1,2,N1 82.9(-,1)
P1,P2 164.8
P1,2,Cl 97.2(-,2.0)
N1,Cl 176.1
[26]
[Pt{η3-Ph2P(CH2)(C5H4N)(CH2)Ph2P-P1,N1,P2}(Cl)]m
P21/n
4
15.915(5)
19.337(8)
8.861(6)
98.94(2)PtP2NCl
(P1C2N1C2P2)
0.089
P1,2 2.285(3,1)
N1 2.2008(7)
Cl 2.312(3)
P1,2,N1 84.6(2,4) d
P1,P2 169.0(2)
P1,2,Cl 95.5(1,9)
N1,Cl 178.5(2)
[27]
[Pt{η3-(η1-C24H44)P(C7H6N)P(η1-C24H44)}(PPh3)].2CH2Cl2 (at 103 K)tr
P 1 ¯
2
13.341(2)
18.981(4)
30.668(6)
93.86(0)
90.89(0)
98.03 (0)
PtP2NP
(P1C2N1C2P2)
0.199
P1,2 2.317(-,8)
N1 2.082(3)
P3 2.270
P1,2,N1 80.9(-,6) d
P1,P2 158.7
P1,2,P3 98.3(-,2.0)
N1, P3 173.0
[28]
[Pt{η3-(η2-C18H28)P(C7H6N)P(η1-C18H29)}(Pcy3)] (at 103 K)m
P21/c
4
17.281(2)
11.881(1)
28.514(4)
104.32(0)PtP2NP
(P1C2N1C2P2)
0.209
P1 2.326
P2 2.389
N1 2.073
P3 2.284
P1,2,N1 82.7(-,1.1) d
P2,N1 162.9
P1,P198.0(-,5.8)
N1, P3 167.5
[29]
Footnotes: a—Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean. b—The parameters, Ʈ4, were calculated: Ʈ4 = 360 − (α + β)/141, where β and α are the two largest angles and assume the values of 0 and 1 for the perfect square planar and perfect tetrahedral geometries, respectively. c—The chemical identity of the coordinated atom or ligand is specified in these columns. d—The five-membered metallocyclic ring.
Table 2. Crystallographic and structural data for Pt{η3-P1C1P2}(Y), (Y = O2L, N2L, CL, Cl, Br) complexes a.
Table 2. Crystallographic and structural data for Pt{η3-P1C1P2}(Y), (Y = O2L, N2L, CL, Cl, Br) complexes a.
ComplexCryst. cl.
Space gr.
Z
a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)
Chromophore
(Chelate Rings)
τ4 b
Pt-L c
(Å)
L-Pt-L c
(°)
Ref.
[Pt{η3-(CF3)2P(C8H7)P(CF3)2}.
(H2O)]SbF6
(at 150 K)
m
C2/c
4
41.924(0)
10.457(0)
22.512(0)

110.54(0)
PtP2CO
(P1C2C1C2P2)
0.143
P1,2 2.245
C1 1.995
H2O 2.156
P1,2,C1 81.7(-,2) d
P1,P2 163.3
P1,2,O 98.3(-,3.9)
C1,O 176.3
[30]
[Pt{η3-Ph2P(C8H7) PPh2}(H2O)]CF3SO3
(at 165 K)
tr

2
9.644(1)
13.885(1)
14.012(3)
119.08(1)
93.43(1)
104.59(1)
PtP2CO
(P1C2C1C2P2)
0.146
P1,2 2.295(-,3)
C1 1.995
H2O 2.156
P1,2,C1 82.0(-,6) d
P1,P2 163.7
P1,2,O 98.1(-,2.7)
C1,O 176.6
[31]
[Pt{η3-Ph2P(C8H7)PPh2} (OMe)].0.5C6H6tr

2
8.824(2)
12.517(1)
14.712(2)
91.94(1)
104.96(1)
104.20(1)
PtP2CO
(P1C2C1C2P2)
0.120
P1,2 2.266(-,4)
C1 2.053
MeO 2.086
P1,2,C1 83.7(-,7) d
P1,P2 166.6
P1,2,O 98.8(-,6.8)
C1,O 176.5
[31]
[Pt{(η3-Pri2)P(C20H11) P(Pri2)}(OOCCF3)]
(at 173 K)
or
Fdd2
4
29.241(1)
39.275(2)
11.361(0)
PtP2CO
(P1C2C1C2P2)
0.181
P1,2 2.289(-,1)
C1 2.045
O 2.139
P1,2,C1 85.8(-,1) d
P1,P2 157.0
P1,2,O 94.2(-,2.5)
C1,O 177.4
[32]
[Pt{η3-(CF3)2P(C8H7)P (CF3)2}(NC5F5)]B(C6F5)4
(at 150 K)
m
P21/c
4
13.932(1)
17.137(2)
19.213(0)
96.29(0)PtP2CN
(P1C2C1C2P2)
0.138
P1,2 2.242(-,2)
C1 2.030
N 2.173
P1,2,C1 80.6(-,1) d
P1,P2 161.3
P1,2,N 99.3(-,5)
C1,N 179.2
[30]
[Pt{η3-Ph2P(C20H13O4)PPh2}.
(N≡CCH3)]BF4
(at 173 K)
or
Pca21
6
21.587(3)
8.904(1)
21.327(3)
PtP2CN
(P1C2C1C2P2)
0.191
P1,2 2.303(-,1)
C1 1.892
N 2.088
P1,2,C1 85.9(-,1.9) d
P1,P2 156.4
P1,2,N 93.5
C1,N 176.8
[32]
[Pt{η3-Ph2P(C20H11O2)PPh2}.
(NC5H5)]Cl.(NC5H5)3
m
P21/c
4
12.892(6)
15.613(8)
26.900(10)
101.48(1)PtP2CN
(P1C2C1C2P2)
0.138
P1,2 2.275(-,2)
C1 2.021
N 2.111
P1,2,C1 81.0 d
P1,P2 162.0
P1,2,N 98.8
C1,N 178.5
[33]
[Pt{η3-Ph2P(C20H11O2)PPh2}. (N≡CCH3)]BF4.CH2Cl2
(at 173 K)
m
P21/c
4
14.711(1)
15.920(1)
17.987(1)
92.15(0)PtP2CN
(P1C2C1C2P2)
0.202
P1,2 2.293(-,5)
C1 2.062
N 2.056
P1,2,C1 85.7(-,3) d
P1,P2 157.4
P1,2,N 97.3(-,3)
C1,N 174.0
[33]
[Pt{η3-Ph2P(C24H19O2)PPh2}(CN)]
(at 103 K)
tg
P212121
4
9.492(0)
9.492 (0)
13.030(1)
PtP2C2
(P1C2C1C2P2)
0.140
P1,2 2.286
C1 2.029
NC 2.062
P1,2,C1 80.1 d
P1,P2 160.1
P1,2,C 99.2
C1,C 180.0
[34]
[Pt{η3-(CF3)2P(C8H7)P.
(CF3)2}(CO)]SbF6
tr

2
11.770(1)
13.950(1)
14.529(1)
91.31(0)
100.81(0)
91.90(0)
PtP2C2
(P1C2C1C2P2)
0.125
P1,2 2.256
C1 1.969
OC 2.053
P1,2,C1 81.6(-,3) d
P1,P2 163.4
P1,2,C 98.3(-,3)
C1,C 179.0
[35]
[Pt{η3-(CF3)2P(C8H7)P.
(CF3)2}(CH3)]
m
P21/c
8
14.732(0)
16.189(0)
17.737(0)
113.42(3)PtP2C2
(P1C2C1C2P2)
0.153
P1,2 2.203(-,2)
C1 2.089
H3C 2.148
P1,2,C1 81.0(-,5) d
P1,P2 161.0
P1,2,C 98.9(-,4)
C1,C 177.3
[35]
[Pt{η3-Pri2P(C8H7)PPri2}(CO)]. CF3SO30.5C6H6
(at 120 K)
m
P21/c
4
13.430(3)
15.667(3)
15.472(3)
112.73(3)PtP2C2
(P1C2C1C2P2)
0.117
P1,2 2.305(-,2)
C1 2.048
C 2.053
P1,2,C1 82.7(-,5) d
P1,P2 165.2
P1,2,C 97.3(-,9)
C1,C 178.2
[36]
[Pt{η3-But2P(C8H7)PBut2}(η1-CHOMe)].CF3SO3.thf
(at 120 K)
m
P21/c
4
15.824(0)
11.375(0)
20.093(0)
97.46(0)PtP2C2
(P1C2C1C2P2)
0.123
P1,2 2.302(-,1)
C1 2.081
C 1.986
P1,2,C1 81.9(-,3) d
P1,P2 163.5
P1,2,C 98.0(-,1.1)
C1,C 179.2
[34]
[Pt{η3-But2P(C12H9)PBut2}
(CO)]BF4
(at 120 K)
or
Pna21
8
12.097(2)
13.150(3)
38.514(8)
PtP2C2
(P1C2C1C2P2)
0.102
P1,2 2.311(-,4)
C1 2.074
OC 1.903
P1,2,C1 83.1(-,1) d
P1,P2 166.3
P1,2,C 96.8(-,2)
C1,C 179.3
[37]
[Pt{η3-Ph2P(C8H7)PPh2}(η1-C12H19N2)]
(at 150 K)
m
P21/c
4
17.576(3)
12.436(2)
18.593(5)
114.34(1)PtP2C2
(P1C2C1C2P2)
0.146
P1,2 2.269(-,2)
C1 2.142
C 2.091
P1,2,C1 81.0(-,2) d
P1,P2 162.0
P1,2,C 99.0(-,3.1)
C1,C 177.5
[38]
[Pt{η3-Ph2P(C8H7)PPh2}(η1-C3F7)]
(at 150 K)
m
P21/c
4
10.192(3)
18.106(8)
17.018(3)
91.01(1)PtP2C2
(P1C2C1C2P2)
0.143
P1,2 2.279(-,2)
C1 2.072
C 2.186
P1,2,C1 81.4(-,2) d
P1,P2 162.8
P1,2,C 98.4(-,5)
C1,C 177.0
[39]
[Pt{η3-Ph2P(C8H7)PPh2}
1-C12H21N2)]2BF4
(at 150 K)
m
C2
2
12.887(0)
15.901(0)
12.177(0)
121.54(0)PtP2C2
(P1C2C1C2P2)
0.133
P1,2 2.275
C1 2.084
C 2.096
P1,2,C1 80.6 d
P1,P2 161.2
P1,2,C 99.4
C1,C 180.0
[40]
[Pt{η3-Ph2P (C20H11O2P)Ph2}Cl].
(CH3CN)4
(at 150 K)
tr

2
12.485(1)
14.669(2)
15.038(2)
118.03(0)
106.22 (0)
90.30(0)
PtP2CCl
(P1C2C1C2P2)
0.232
P1,2 2.265
C1 2.086
Cl 2.394
P1,2,C1 85.4(-,3) d
P1, P2 155.4
P1,2,Cl 96.2(-,6)
C1,Cl 172.0
[33]
[Pt{η3-Ph2P(C24H19O2)PPh2}Cl]
(at 103 K)
m
P21
4
11.798(3)
26.540(2)
12.725(1)
96.64(0)PtP2CCl
(P1C2C1C2P2)
0.138
P1,2 2.276(-,1)
C1 2.022
Cl 2.388
P1,2,C1 82.7(-,1.0) d
P1, P2 163.9
P1,2,Cl 97.4(-,4)
C1,Cl 176.4
[34]
[Pt{η3-(CF3)2P(C8H7)P (CF3)2}Cl]1.5(C6H6)
(at 173 K)
m
P21/c
4
10.111(0)
19.270(0)
13.082(0)
102.86(0)PtP2CCl
(P1C2C1C2P2)
0.156
P1,2 2.233(-,5)
C1 2.037
Cl 2.370
P1,2,C1 80.9(-,3) d
P1, P2 161.0
P1,2,Cl 99.2(-,5)
C1,Cl 176.9
[35]
[Pt{η3-But2P(C8H7)PBut2}Cl]
(at 120 K)
or
P212121
8
12.965(3)
13.853(3)
14.642(3)
PtP2CCl
(P1C2C1C2P2)
0.094
P1,2 2.288(-,3)
C1 2.017
Cl 2.407
P1,2,C1 83.7(-,1) d
P1, P2 167.3
P1,2,Cl 96.3(-,64)
C1,Cl 179.2
[36]
[Pt{η3-But2P(C12H9)PBut2}Cl]
(at 120 K)
m
P21/n
4
16.195(3)
10.440(2)
17.588(4)
109.21(3)PtP2CCl
(P1C2C1C2P2)
0.097
P1,2 2.287(-,6)
C1 2.016
Cl 2.431
P1,2,C1 83.9(-,4) d
P1, P2 167.7
P1,2,Cl 96.1(-,6)
C1,Cl 178.7
[37]
[Pt{η3-But2P(C8H7)PBut2}Cl]
m
P21/n
4
12.018(0)
14.803(0)
15.728(0)
100.79(0)PtP2CCl
(P1C2C1C2P2)
0.120
P1,2 2.305(-,3)
C1 2.065
Cl 2.434
P1,2,C1 83.8(-,5) d
P1, P2 167.3
P1,2,Cl 96.1(-,1)
C1,Cl 175.6
[41]
Pt{η3-Pri2P(C8H7)PPri2}Cl]
(at 120 K)
tr

2
11.148(2)
13.935(3)
14.683(3)
78.16(3)
82.35(3)
89.33(3)
PtP2CCl
(P1C2C1C2P2)
0.105
P1,2 2.279(-,4)
C1 2.006
Cl 2.436
P1,2,C1 83.6(-,2) d
P1, P2 167.4
P1,2,Cl 96.1(-,1)
C1,Cl 177.7
[42]
[Pt{η3-Ph2P(C8H7)PPh2}Cl]m
P21/n
4
10.290(2)
16.117(3)
15.173(3)
105.47(3)PtP2CCl
(P1C2C1C2P2)
0.130
P1,2 2.277(-,2)
C1 2.002
Cl 2.383
P1,2,C1 81.6(-,6) d
P1,P2 163.1
P1,2,Cl 98.4(-,1.1)
C1,Cl 178.5
[43]
[Pt{η3-Ph2P(C14H7)PPh2}Cl].
CH3CN
(at 223 K)
m
P21/c
4
12.773(0)
17.780(0)
14.72448(0)
96.54(0)PtP2CCl
(P1C2C1C2P2)
0.107
P1,2 2.268(-,2)
C1 1.991
Cl 2.391
P1,2,C1 83.7(-,1) d
P1,P2 167.3
P1,2,Cl 96.2(-,1.7)
C1,Cl 177.5
[44]
[Pt{η3-Ph2P(C13H7O2)PPh2} Cl].CH3CN
(at 223 K)
or
Pbca
8
18.768(0)
16.966(0)
21.649(0)
PtP2CCl
(P1C2C1C2P2)
0.138
P1,2 2.266(-,1)
C1 2.050
Cl 2.397
P1,2,C1 84.6(-,7) d
P1,P2 166.3
P1,2,Cl 95.8(-,2)
C1,Cl 174.3
[44]
[Pt{η3-Ph2P(C18H19O8) PPh2}Cl]CH2Cl2
(at 103 K)
or
P212121
8
10.432(1)
17.092(2)
24.423(3)
PtP2CCl
(P1C2C1C2P2)
0.163
P1,2 2.277(-,5)
C1 2.006
Cl 2.385
P1,2,C1 81.0(-,1) d
P1,P2 162.0
P1,2,Cl 99.0(-,5)
C1,Cl 174.7
[45]
Pt{η3-Pri2P(C20H11)PPri2}Cl].
(CH3CN)2
m
P21/n
4
14.622(0)
15.048(1)
15.642(1)
96.24(0)PtP2CCl
(P1C2C1C2P2)
0.171
P1,2 2.284(-,1)
C1 2.064
Cl 2.392
P1,2,C1 86.0(-,2) d
P1,P2 156.2
P1,2,Cl 94.0(-,2)
C1,Cl 179.53
[46]
[Pt{η3-Ph2P(C8H7)PPh2}Br]
m
P21/n
4
10.127(2)
14.776(2)
19.023(3)
91.01(1)PtP2CBr
(P1C2C1C2P2)
0.138
P1,2 2.272(-,14)
C1 2.023
Br 2.468
P1,2,C1 82.4(-,1) d
P1,P2 164.8
P1,2,Br 97.7(-,6)
C1,Br 175.8
[47]
[Pt{η3-But2P(C6H5N2)PBut2}(Br)]
(at 150 K)
m
C2
4
15.517(0)
13.055(0)
15.383(0)
118.78(0)PtP2CBr
(P1C2C1C2P2)
0.140
P1 2.290
P2 2.030
Br 2.466
P1,2,C1 82.5 d
P1,P2 165.0
P1,2,Br 97.5
C1,Br 175.2
[40]
Footnotes: a—Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean. b—The parameters, τ4, were calculated τ4 = 360 − (α + β)/141, where β and α are the two largest angles and assume the values of 0 and 1 for the perfect square planar and perfect tetrahedral geometries, respectively. c—The chemical identity of the coordinated atom or ligand is specified in these columns. d—Five-membered metallocyclic ring.
Table 3. Crystallographic and structural data for Pt(η3–P1X1P2)(Y), (X1 = S1 or Si1), (Y = C2L,Cl,P3L,I,H,O2L) complexes a.
Table 3. Crystallographic and structural data for Pt(η3–P1X1P2)(Y), (X1 = S1 or Si1), (Y = C2L,Cl,P3L,I,H,O2L) complexes a.
ComplexCryst. cl.
Space gr.
Z
a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)
Chromophore
(Chelate Rings)
τ4 b
Pt-L c
(Å)
L-Pt-L c
(˚)
Ref.
[Pt{η3-Ph2P(C6H4) S(=O)(C6H4)PPh2} (CH3)]PF6.CH3CN (at 100 K)m
P21/n
4
8.936(2)
16.722(4)
25.078(6)
95.72(1)PtP2SC
(P1C2S1C2P2)
0.102
P1,2 2.273(-,3)
S1 2.268
H3C 2.093
P1,2,S1 86.6(-,1) d
P1,P2 167.0
P1,2,C 93.2(-,3)
S1,C 178.2
[48]
[Pt{η3-Ph2P(C6H4)S(=O)(C6H4)PPh2}(Cl)].PF6.CH3CNm
P21/c
4
13.360(0)
15.308(0)
18.787(0)
106.11(0)PtP2SCl
(P1C2S1C2P2)
0.140
P1,2 2.307
S1 2.192
Cl 2.316
P1,2,S 84.6
P1,P2 162.7
P1,2,Cl 94.8
S1,Cl 177.6
[48]
[Pt{η3-Ph2P(CH2)2 S(=O)(CH2)2PPh2}(Cl)].ClO4tr
P 1 ¯
2
9.460(2)
12.079(3)
13.834(3)
93.53(2)
103.85(2)
104.22(2)
PtP2SCl
(P1C2S1C2P2)
0.135
P 2.319(2,0)
S1 2.182(2)
Cl 2.318(1)
P1,2,S1 85.6
P1,P2 164.4
P1,2,Cl 95.8
S1,Cl 176.6
[49]
[Pt{η3-Ph2P(C6H4) S(=O)(C6H4)PPh2}(PPh3)].0.5(CH2Cl2)(at 100 K)tr
P 1 ¯
2
11.295(5)
11.469(1)
17.269(1)
86.45(1)
88.54(1)
77.08(1)
PtP2SP
(P1C2S1C2P2)
0.143
P1,2 2.273(-,3)
S1 2.313
Ph3P3 2.281
P1,2,S1 86.0(-,3) d
P1,P2 162.4
P1,2,P3 94.7
S1,P3 177.5
[48]
[Pt{η3-Ph2P(CH2)2S (CH2)2}PPh2}(PPh3)].2.ClO4 Me2CO
(at 120 K)
or
Pnma
4
15.698(3)
15.337(3)
19.957(4)
PtP2SP
(P1C2S1C2P2)
0.143
P1,2 2.309(-,1)
S1 2.343
Ph3P3 2.289
P1,2,S1 81.3 d
P1,P2 161.6
P1,2,P3 98.7
S1,P3 178.3
[50]
[Pt{η3-Ph2P(C23H28S)PPh2}(I)](I).1.74 CH2Cl2(at 173 K)tr
P 1 ¯
2
9.845(0)
15.277(0)
17.264(0)
84.94(0)
84.03(0)
89.18(0)
PtP2Si
(P1C2S1C2P2)
0.120
P1,2 2.311(-,1)
S1 2.252
I 2.510
P1,2,S1 84.0(-,3) d
P1,P2 165.4
P1,2,I 96.7
S, I 177.7
[51]
[Pt{η3-cyh2P(C6H4)Si(Me). (C6H4)Pcyh2}(H)].0.5 pentane (at 150 K)m
C2/c
4
24.426(0)
16.300(0)
39.968(3)
105.39(0)PtP2SiH
(P1C2Si1C2P2)
0.179
P1,2 2.254(-,4)
Si1 2.326
H 1.486
P1,2,Si1 85.3(-,0) d
P1, P2 159.5
P1,2,H 94.7(-,4.7)
Si1, H 175.3
[52]
[Pt{η3-cyh2P(C6H4)Si (Me)(C6H4)Pcyh2}(H)].1.25 pentane (at 93 K)m
C2/c
4
29.595(0)
17.388(0)
33.970(2)

99.64(0)
PtP2SiH
(P1C2Si1C2P2)
0.158
P1,2 2.262(0,2)
Si1 2.336
H 1.527
P1,2,Si1 84.2(-,0) d
P1, P2 162.0
P1,2,H 94.6(-,7)
Si1, H 175.6
[52]
[Pt{η3-Ph2P(C6H4)Si(Me) (C6H4)PPh2}(OEt2)].{B(C6F5)3 (CH2Ph)}.OEt2 tr
P 1 ¯
2
14.718(1)
14.957(1)
15.402(1)
100.40(0)
103.42(0)
99.60(0)
PtP2SiO
(P1C2Si1C2P2)
0.115
P1,2 2.299(-,6)
Si1 2.276
O 2.282
P1,2,Si1 83.9(-,1.0) d
P1, P2 165.5
P1,2, O 96.1(-,2.3)
Si1, O 178.4
[53]
[Pt{η3-cyh2P(C6H4)Si (Me)(C6H4)Pcyh2}(Ph)].OEt2
(at 173 K)
tr
P 1 ¯
2
13.506(5)
14.057(5)
14.950(0)
116.38(0)
93.48(0)
112.52(0)
PtP2SiC
(P1C2Si1C2P2)
0.156
P1,2 2.279(-,2)
Si1 2.324
C 2.139
P1,2,Si1 83.7(-,1) d
P1, P2 162.7
P1,2, C 96.8(-,2)
Si1, C 175.1
[53]
[Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2} (CH2Ph)].CH2Cl2(at 193 K)tr
P 1 ¯
2
13.586(1)
16.908(1)
19.771(2)
89.73(0)
76.03(0)
67.88(0)
PtP2SiC
(P1C2Si1C2P2)
0.151
P1,2 2.260
Si1 2.356
C 2.201
P1,2, Si1 82.6(-,3) d
P1, P2 163.0
P1,2, C 97.0(-,1)
Si1, Cl 175.7
[53]
[Pt{η3-Pri2P(C6H4)Si(OH) (C6H4)PPri2}(CO)].B(C6F5)4
(at 120 K)
tr
P 1 ¯
2
13.658(0)
15.098(0)
15.201(0)
112.54(0)
94.60(0)
116.83(0)
PtP2SiC
(P1C2Si1C2P2)
0.179
P1,2 2.325(-,3)
Si1 2.365
OC 1.994
P1,2, Si1 82.1(-,2) d
P1, P2 161.2
P1,2, C 98.3(-,1.1)
Si1, C 173.4
[54]
[Pt{η3-Pri2P(C6H4)Si(H)(C6H4)PPri2}(mes)] (at 110 K)or
P212121
6
8.186(0)
17.908(0)
21.795(1)
PtP2SiC
(P1C2Si1C2P2)
0.171
P1,2 2.286(-,2)
Si1 2.312
C 2.154
P1,2, Si1 83.4(-,2) d
P1, P2 159.0
P1,2, C 98.4(-,1.1)
Si1, C 177.0
[55]
[Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2} (Cl)] (at 173 K)m
P4/c
4
9.911(1)
13.656(1)
23.845(3)
97.90(0)PtP2SiCl
(P1C2Si1C2P2)
0.250
P1,2 2.261
Si1 2.278
Cl 2.437
P1,2, Si1 84.9(-,6) d
P1, P2 155.4
P1,2, Cl 97.0(-,1)
Si1, Cl 169.3
[53]
[Pt{η3-Ph2P(C6H4)Si(Me)(C6H4)PPh2} (AlCl3)].2(C6H5F) (at 193 K)or
P212121
4
16.111(1)
16.989(1)
17.437(1)
PtP2SiCl
(P1C2Si1C2P2)
0.181
P1,2 2.289(-,0)
Si1 2.285
Cl 2.438
P1,2,Si1 84.7(-,1) d
P1, P2 164.2
P1,2, Cl 96.8(2,3)
Si1, Cl 170.2
[53]
[Pt{η3-Pri2P(C6H4)Si(OH)(C6H4)PPri2}(Cl)] (at 120 K)m
P21/c
4
8.465(0)
18.246(0)
16.810(0)
94.98(0)PtP2SiCl
(P1C2Si1C2P2)
0.163
P1,2 2.292(-,3)
Si1 2.277
Cl 2.469
P1,2, Si1 84.2(-,1) d
P1,P2 161.7
P1,2,Cl 96.3(-,1.2)
Si1,Cl 175.1
[54]
[Pt{η3-Pri2P(C6H4)Si(H)(C6H4)Pcyh2}(Cl)] (at 110 K)m
P21/n
4
12.420(8)
13.735(8)
15.539(10)
99.74(0)PtP2SiCl
(P1C2Si1C2P2)
0.146
P1,2 2.296
Si1 2.276
Cl 2.452
P1,2, Si1 84.2(-,2) d
P1, P2 162.4
P1,2, Cl 95.9(-,2.8)
Si1, Cl 177.1
[55]
[Pt{η3-cyh2P(C6H4)Si(Me) (C6H4)Pcyh2}(Cl)]
(at 153 K)
m
P21/c
4
13.104(3)
16.579(3)
17.770(4)
108.97(3)PtP2SiCl
(P1C2Si1C2P2)
0.140
P1,2 2.293
Si1 2.279
Cl 2.460
P1,2, Si1 84.7(-,1) d
P1, P2 162.2
P1,2, Cl 95.4(-,1.8)
Si1, Cl 178.0
[56]
Footnotes: a—Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is the e.s.d., and the second is the maximum deviation from the mean. b—The parameters, τ4, were calculated τ4 = 360 − (α + β)/141, where β and α are the two largest angles and assume the values of 0 and 1 for the perfect square planar and perfect tetrahedral geometries, respectively. c—The chemical identity of the coordinated atom or ligand is specified in these columns. d—Five-membered metallocyclic ring.
Table 4. Total mean values of angles and τ4 of the respective complexes according to the plasticity of atoms.
Table 4. Total mean values of angles and τ4 of the respective complexes according to the plasticity of atoms.
Donor Atoms α-X1-Pt-Y (°)β-P1-Pt-P2 (°)τ4
X1(S)-Pt-(H)Y 162.2175.60.151
X1(S)-Pt-(B)Y 164.9175.50.138
X1(S)-Pt-(S)Y164.3175.50.128
X1(H)-Pt-(H)Y166.8176.20.054
S—soft; H—hard; B—borderline; P1, P2—soft.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Melník, M.; Mikušová, V.; Mikuš, P. Structural Aspects of Pt(η3–P1C2X1C2P2)(Y) Derivative Types. Crystals 2023, 13, 1340. https://doi.org/10.3390/cryst13091340

AMA Style

Melník M, Mikušová V, Mikuš P. Structural Aspects of Pt(η3–P1C2X1C2P2)(Y) Derivative Types. Crystals. 2023; 13(9):1340. https://doi.org/10.3390/cryst13091340

Chicago/Turabian Style

Melník, Milan, Veronika Mikušová, and Peter Mikuš. 2023. "Structural Aspects of Pt(η3–P1C2X1C2P2)(Y) Derivative Types" Crystals 13, no. 9: 1340. https://doi.org/10.3390/cryst13091340

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop