Electronic Structure of Cu(tmdt)2 Studied with First-Principles Calculations
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Isolated Molecule
3.2. Solid State
3.2.1. Non-Magnetic Results
3.2.2. Spin-Polarized Results
Magneticorder | Unitcell | Relative energy (meV/molecule) |
---|---|---|
FM | (a, b, c) | −9:3 |
AFM | (2a, b, c) | −35:8 |
AFM | (a, 2b, c) | −10:0 |
AFM | (a, b, 2c) | −10:0 |
AFM | (a, b−c, b+c) | −9:6 |
AFM | (c+a, b, c−a) | −32:7 |
AFM | (a−b, a+b, c) | −32:9 |
3.3. On the Qualitative Difference between Cu(tmdt)2 and Cu(dmdt)2
4. Conclusions
Acknowledgments
References
- Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki, W.; Kobayashi, A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science 2001, 291, 285–287. [Google Scholar]
- Suzuki, W.; Fujiwara, E.; Kobayashi, A.; Fujishiro, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Fujiwara, H.; Kobayashi, H. Highly conducting crystals based on single-component gold complexes with extended-TTF dithiolateligands. J. Am. Chem. Soc. 2003, 125, 1486–1487. [Google Scholar]
- Tanaka, H.; Kobayashi, H.; Kobayashi, A. A conducting crystal based on a single-component paramagnetic molecule, [Cu(dmdt)2] (dmdt = Dimethyltetrathiafulvalenedithiolate). J. Am. Chem. Soc. 2002, 124, 10002–10003. [Google Scholar] [CrossRef]
- Yamamoto, K.; Fujiwara, E.; Kobayashi, A.; Fujishiro, Y.; Nishibori, E.; Sakata, M.; Takata, M.; Tanaka, H.; Okano, Y.; Kobayashi, H. Single-component molecular conductor [Zn(tmdt)2] and related Zn complexes. Chem. Lett. 2005, 34, 1090–1091. [Google Scholar] [CrossRef]
- Tanaka, H.; Hara, S.; Tokumoto, M.; Kobayashi, A.; Kobayashi, H. Resistance measurements of microcrystals of single-component molecular metals using finely patterned interdigitated electrodes. Chem. Lett. 2007, 36, 1006–1007. [Google Scholar] [CrossRef]
- Zhou, B.; Yajima, H.; Kobayashi, A.; Okano, Y.; Tanaka, H.; Kumashiro, T.; Nishibori, E.; Sawa, H.; Kobayashi, H. Single-component molecular conductor [Cu(tmdt)2] containing an antiferromagnetic heisenberg chain. Inorg. Chem. 2010, 49, 6740–6747. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Ishibashi, S.; Tanaka, H.; Kohyama, M.; Tokumoto, M.; Kobayashi, A.; Kobayashi, H.; Terakura, K. Ab initio electronic structure calculation for single-component molecular conductors Au(tmdt)2 (tmdt = trimethylenetetrathiafulvalenedithiolate). J. Phys. Soc. Jpn. 2005, 74, 843–846, 1879. [Google Scholar] [CrossRef]
- Ishibashi, S.; Terakura, K.; Kobayashi, A. Electronic structures of single component molecular metals based on Ab initio calculation. J. Phys. Soc. Jpn. 2008, 77, 024702:1–024702:7. [Google Scholar]
- Seo, H.; Ishibashi, S.; Okano, Y.; Kobayashi, H.; Kobayashi, A.; Fukuyama, H.; Terakura, K. Single-component molecular metals as multiband π-d systems. J. Phys. Soc. Jpn. 2008, 77, 023714:1–023714:4. [Google Scholar]
- QMAS (Quantum MAterials Simulator). Available online: http://www.qmas.jp (accessed on 17 August 2012).
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Holzwarth, N.A.W.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids. Phys. Rev. B 1997, 55, 2005–2017. [Google Scholar]
- Kresse, G.; Joubert, D. From ultrasoftpseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Seo, H. Private communication. The Institute of Physical and Chemical Research (RIKEN): Japan, 2012. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ishibashi, S.; Terakura, K. Electronic Structure of Cu(tmdt)2 Studied with First-Principles Calculations. Crystals 2012, 2, 1210-1221. https://doi.org/10.3390/cryst2031210
Ishibashi S, Terakura K. Electronic Structure of Cu(tmdt)2 Studied with First-Principles Calculations. Crystals. 2012; 2(3):1210-1221. https://doi.org/10.3390/cryst2031210
Chicago/Turabian StyleIshibashi, Shoji, and Kiyoyuki Terakura. 2012. "Electronic Structure of Cu(tmdt)2 Studied with First-Principles Calculations" Crystals 2, no. 3: 1210-1221. https://doi.org/10.3390/cryst2031210
APA StyleIshibashi, S., & Terakura, K. (2012). Electronic Structure of Cu(tmdt)2 Studied with First-Principles Calculations. Crystals, 2(3), 1210-1221. https://doi.org/10.3390/cryst2031210