Synthesis and Molecular Structures of (E)-non-2-enoic Acid and (E)-dec-2-enoic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystal Structures
Compound | C9 | C10 | ||
---|---|---|---|---|
Chemical formula | C9H16O2 | C10H18O2 | ||
Formula weight | 156.22 | 170.24 | ||
Crystal system | monoclinic | triclinic | ||
Unit cell dimensions | a | 10.6473(4) Å | 4.1405(2) Å | |
b | 5.2855(2) Å | 15.2839(6) Å | ||
c | 17.0313(7) Å | 17.7089(7) Å | ||
α | 90° | 68.3291(11)° | ||
β | 106.0985(10)° | 83.3850(13)° | ||
γ | 90° | 85.0779(12)° | ||
Unit cell volume | 920.87(6) Å3 | 1033.39(8) Å3 | ||
Temperature | 150(2) K | 150(2) K | ||
Space group | P21/c | P | ||
Z (Z’) | 4 (1) | 4 (2) | ||
μ | 0.078 mm−1 | 0.074 mm−1 | ||
No. of reflections measured | 8209 | 20,844 | ||
No. of independent reflections | 2216 | 4999 | ||
Rint | 0.0148 | 0.0236 | ||
Final R1 values (I > 2σ(I)) | 0.0365 | 0.0443 | ||
Final wR(F2) values (I > 2σ(I)) | 0.0992 | 0.1108 | ||
Final R1 values (all data) | 0.0420 | 0.0619 | ||
Final wR(F2) values (all data) | 0.1046 | 0.1226 | ||
Goodness of fit on F2 | 1.054 | 1.057 | ||
Density | 1.127 g/cm³ | 1.094 g/cm³ |
-- | C9 | C10 | -- | -- |
---|---|---|---|---|
Atoms | Distance | Distance | Atoms | Distance |
C1–O1 | 1.2902(11) | 1.2860(15) | C11–O3 | 1.2757(15) |
C1–O2 | 1.2468(11) | 1.2547(15) | C11–O4 | 1.2575(14) |
C1–C2 | 1.4711(12) | 1.4714(17) | C11–C12 | 1.4697(16) |
C2–C3 | 1.3242(13) | 1.3199(18) | C12–C13 | 1.3197(17) |
C3–C4 | 1.5010(11) | 1.4965(16) | C13–C14 | 1.4927(16) |
average C–C (alkyl chain) | 1.523 | 1.523 | average C–C (alkyl chain) | 1.523 |
H-bonds in: | D–H∙∙∙A | D–H | H∙∙∙A | D∙∙∙A |
C9 | O1–H1∙∙∙O2i | 0.960(15) | 1.676(15) | 2.6319(9) |
C10 | O1–H1∙∙∙O2ii | 0.967(19) | 1.679(19) | 2.6400(13) |
-- | O3–H3A∙∙∙O4iii | 0.84 | 1.79 | 2.6209(12) |
-- | O4–H4A∙∙∙O3iii | 0.84 | 1.81 | 2.6209(12) |
Atoms | Angle | Angle | Atoms | Angle |
O1–C1–O2 | 123.35(8) | 123.32(11) | O3–C11–O4 | 123.55(11) |
O1–C1–C2 | 117.78(8) | 117.88(11) | O3–C11–C12 | 118.30(10) |
O2–C1–C2 | 118.88(8) | 118.80(11) | O4–C11–C12 | 118.14(11) |
C1–C2–C3 | 123.29(8) | 123.74(12) | C11–C12–C13 | 124.19(12) |
C2–C3–C4 | 125.11(8) | 124.69(12) | C12–C13–C14 | 124.11(12) |
H-bonds in: | D–H∙∙∙A | Angle | Symmetry codes | -- |
C9 | O1–H1∙∙∙O2i | 173.9(14) | (i) – x + 2, – y, – z + 2 | -- |
C10 | O1–H1∙∙∙O2ii | 172.4(17) | (ii) – x + 1, – y, – z + 2 | -- |
-- | O3–H3A∙∙∙O4iii | 170 | (iii) – x + 2, –y + 1, –z | -- |
-- | O4–H4A∙∙∙O3iii | 162 | -- | -- |
3. Experimental Section
3.1. General Considerations
3.2. Materials
3.3. General Synthesis of α,β-unsaturated Carboxylic acids
3.4. Crystal Structure Determinations
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Burr, G.O.; Burr, M.M.; Miller, E.S. On the fatty acids essential in nutrition. III. J. Biol. Chem. 1932, 97, 1–9. [Google Scholar]
- Damude, H.G.; Kinney, A.J. Enhancing plant seed oils for human nutrition. Plant Physiol. 2008, 147, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Lands, B. Consequences of essential fatty acids. Nutrients 2012, 4, 1338–1357. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.A.; Kim, H.-Y. Discovery of essential fatty acids. J. Lipid Res. 2015, 56, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Beare-Rogers, J.; Dieffenbacher, A.; Holm, J.V. Lexicon of lipid nutrition (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 685–744. [Google Scholar] [CrossRef]
- Blum, M.S.; Novak, A.F.; Tabler, S. 10-Hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science 1959, 130, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Townsend, G.F.; Morgan, J.F.; Tolnai, S.; Hazlett, B.; Morton, H.J.; Shuel, R.W. Studies on the in vitro antitumor activity of fatty acids. I. 10-Hydroxy-2-decenoic acid from royal jelly. Cancer Res. 1960, 20, 503–510. [Google Scholar] [PubMed]
- Murphy, T.C.; Poppe, C.; Porter, J.E.; Montine, T.J.; Picklo, M.J., Sr. 4-Hydroxy-trans-2-nonenoic acid is a γ-hydroxybutyrate receptor ligand in the cerebral cortex and hippocampus. J. Neurochem. 2004, 89, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Chatani, Y.; Sakata, Y.; Nitta, I. Crystal structure of monomers polymerizable in their solid states. Part I. Acrylic acid. J. Polym. Sci. B Polym. Lett. 1963, 1, 419–421. [Google Scholar] [CrossRef]
- Higgs, M.A.; Sass, R.L. The crystal structure of acrylic acid. Acta Cryst. 1963, 16, 657–661. [Google Scholar] [CrossRef]
- Boese, R.; Bläser, D.; Steller, I.; Latz, R.; Bäumen, A. Redetermination of 2-propenoic acid at 125K. Acta Cryst. 1999, C55. [Google Scholar] [CrossRef]
- Oswald, I.D.H.; Urquhart, A.J. Polymorphism and polymerization of acrylic and methacrylic acid at high pressure. CrystEngComm 2011, 13, 4503–4507. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, S.; Kekka, S.; Kashino, S.; Haisa, M. Topochemical Studies. III. The Crystal and Molecular Structures of Crotonic Acid, CH3CH=CHCOOH, and Crotonamide, CH3CH=CHCONH2. Bull. Chem. Soc. Jpn. 1974, 47, 1627–1631. [Google Scholar] [CrossRef]
- Peppel, T.; Sonneck, M.; Spannenberg, A.; Wohlrab, S. Crystal structure of (E)-pent-2-enoic acid. Acta Cryst. 2015, E71. [Google Scholar] [CrossRef] [PubMed]
- Peppel, T.; Sonneck, M.; Spannenberg, A.; Wohlrab, S. Crystal structure of (E)-hex-2-enoic acid. Acta Cryst. 2015, E71. [Google Scholar] [CrossRef] [PubMed]
- Sonneck, M.; Peppel, T.; Spannenberg, A.; Wohlrab, S. Crystal structure of (E)-undec-2-enoic acid. Acta Cryst. 2015, E71, o426–o427. [Google Scholar] [CrossRef] [PubMed]
- Sonneck, M.; Peppel, T.; Spannenberg, A.; Wohlrab, S. Crystal structure of (E)-dodec-2-enoic acid. Acta Cryst. 2015, E71, o528–o529. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Beatty, A.M.; Helfrich, B.A.; Nieuwenhuyzen, M. Do polymorphic compounds make good cocrystallizing agents? A structural case study that demonstrates the importance of synthon flexibility. Cryst. Growth Des. 2003, 3, 159–165. [Google Scholar] [CrossRef]
- Stanton, M.K.; Bak, A. Physicochemical properties of pharmaceutical co-crystals: A case study of ten AMG 517 co-crystals. Cryst. Growth Des. 2008, 8, 3856–3862. [Google Scholar] [CrossRef]
- Strieter, F.J.; Templeton, D.H.; Scheuerman, R.F.; Sass, R.L. The crystal structure of propionic acid. Acta Cryst. 1962, 15, 1233–1239. [Google Scholar] [CrossRef]
- Allan, D.R.; Clark, S.J.; Parsons, S.; Ruf, M. A high-pressure structural study of propionic acid and the application of CCD detectors in high-pressure single-crystal X-ray diffraction. J. Phys. Condens. Matter 2000, 12, L613–L618. [Google Scholar] [CrossRef]
- Strieter, F.J.; Templeton, D.H. Crystal structure of butyric acid. Acta Cryst. 1962, 15, 1240–1244. [Google Scholar] [CrossRef]
- Scheuerman, R.F.; Sass, R.L. The crystal structure of valeric acid. Acta Cryst. 1962, 15, 1244–1247. [Google Scholar] [CrossRef]
- Bond, A.D. On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J. Chem. 2004, 28, 104–114. [Google Scholar] [CrossRef]
- Schneegans, A. Die Perkin’sche Reaction in der Fettkörperreihe. Justus Liebigs Ann. Chem. 1885, 227, 79–96. [Google Scholar] [CrossRef]
- Harding, V.J.; Weizmann, C. XXXII.—Δ1-Nonylenic acid. J. Chem. Soc. Trans. 1910, 97, 299–304. [Google Scholar] [CrossRef]
- Knoevenagel, E. Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Ber. Dtsch. Chem. Ges. 1898, 31, 2596–2619. [Google Scholar] [CrossRef]
- Doebner, O. Ueber die der Sorbinsäure homologen, ungesättigten Säuren mit zwei Doppelbindungen. Ber. Dtsch. Chem. Ges. 1902, 35, 1136–1147. [Google Scholar] [CrossRef]
- Bennani, Y.L.; Sharpless, K.B. Asymmetric Synthesis of γ-Hydroxy α,β-Unsaturated Amides via an AD-elimination Process; Synthesis of (+)-Coriolic Acid. Tetrahedron Lett. 1993, 34, 2083–2086. [Google Scholar] [CrossRef]
- Böhme, R.; Jung, G.; Breitmaier, E. Synthesis of the Antibiotic (R)-Reutericyclin via Dieckmann Condensation. Helv. Chim. Acta 2005, 88, 2837–2841. [Google Scholar] [CrossRef]
- Scanlan, J.T.; Swern, D. Action of lead tetraacetate upon hydroxylated fat acids and related compounds. II. hydroxylated ricinoleic acid and castor oil. J. Am. Chem. Soc. 1940, 62, 2309–2311. [Google Scholar] [CrossRef]
- Van Romburgh, P. On the essential oil of achasma walang val. Rec. Travaux Chim. Pays-Bas 1938, 57, 494–499. [Google Scholar] [CrossRef]
- Gouge, M. γ-Ethylenic glycols. Ann. Chim. Appl. 1951, 6, 648–704. [Google Scholar]
- Bruker, APEX II; Bruker AXS Inc.: Madison, WI, USA, 2007.
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Bruker, SADABS; Bruker AXS Inc.: Madison, WI, USA, 2001.
- Brandenburg, K. DIAMOND, version 2.1 c; Crystal Impact GbR: Bonn, Germany, 1999. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonneck, M.; Peppel, T.; Spannenberg, A.; Wohlrab, S. Synthesis and Molecular Structures of (E)-non-2-enoic Acid and (E)-dec-2-enoic Acid. Crystals 2015, 5, 466-474. https://doi.org/10.3390/cryst5040466
Sonneck M, Peppel T, Spannenberg A, Wohlrab S. Synthesis and Molecular Structures of (E)-non-2-enoic Acid and (E)-dec-2-enoic Acid. Crystals. 2015; 5(4):466-474. https://doi.org/10.3390/cryst5040466
Chicago/Turabian StyleSonneck, Marcel, Tim Peppel, Anke Spannenberg, and Sebastian Wohlrab. 2015. "Synthesis and Molecular Structures of (E)-non-2-enoic Acid and (E)-dec-2-enoic Acid" Crystals 5, no. 4: 466-474. https://doi.org/10.3390/cryst5040466
APA StyleSonneck, M., Peppel, T., Spannenberg, A., & Wohlrab, S. (2015). Synthesis and Molecular Structures of (E)-non-2-enoic Acid and (E)-dec-2-enoic Acid. Crystals, 5(4), 466-474. https://doi.org/10.3390/cryst5040466