Decay Time Estimates by a Continuum Model for Inorganic Scintillators
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Continuum Model for Scintillation. From the Microscopic to the Mesoscopic Scale: The Vector of Excitation Carrier Densities
2.2. The Mesoscopic Scale: A Reaction-Diffusion-Drift Equation for the Excitation Carrier Densities
3. Results
3.1. Reaction-Diffusion-Drift Equations for Scintillators
3.2. Explicit Results for a Cubic Model of Recombination
3.3. NaI:Tl
3.4. BaF2
3.5. GSO:Ce
3.6. LaCl3:Ce
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DICEA | Dipartimento di Ingegneria Civile, Edile e Architettura |
ICRYS | Centro Interdipartimentale di Ricerca e Analisi Globale dei Cristalli |
UNIVPM | Universitá Politecnica delle Marche, Ancona, (Italy) |
CERN | European Center for Nuclear Research, Geneva (Swiss) |
PANDA | Proton Annihilation in Darmstadt, GSI, Darmstadt (Germany) |
Appendix A. Glossary of symbols and units
region occupied by the scintillating crystal; | |
x | typical point of ; |
incoming energy, excitation energy (KeV); | |
N | excitation carriers generated by E; |
radius and length of the elementary cylindrical track (m); | |
excitation carriers’ density across the track cross-section (m−3); | |
radial integration variable (m); | |
z | track-length coordinate (m); |
stopping power (KeV/m); | |
parameters of the approximate solution of the Bethe–Bloch equation; | |
scintillation region within the crystal; | |
scaling parameter; | |
scaled radius and track length (m); | |
rescaled excitation carriers’ density across the track cross-section (m−3); | |
ℓ-dimensional vector of excitation carriers (, m−3); | |
matrix of excitation carriers, ; | |
e | elementary electron charge ( C); |
local electric potential (V); | |
crystal dielectric constant (C/Vm); | |
ℓ-dimensional vector of charge number, ; | |
outward unit normal to the boundary of ; | |
t | time (s); |
electric current generated by the rate of change of excitation carrier (C/m2); | |
microstress matrix (normalized total current density, 1/m2s); | |
ℓ-dimensional interactive microforce vector (1/m3s); | |
ℓ-dimensional volume microforce vector (1/m3s); | |
ℓ-dimensional surface microforce vector (external supply of electric current 1/m2s); | |
denotes both the m-dimensional Euclidean norm of a vector and the norm of a function in a suitable normed space. | |
internal energy and Gibbs free-energy densities (eV/m3); | |
s | : internal entropy density (eV/m3K); |
specific heat (eV/m3K); | |
Boltzmann constant ( eV/K); | |
ℓ-dimensional vector of normalizing constant (, m3); | |
ℓ-dimensional scintillation potentials vector (, eV); | |
microworking (eV/s); | |
heat flux (eV/m2s); | |
r | heat supply (eV/m3s); |
absolute temperature (K) | |
thermal conductivity (eV/m s K); | |
positive-definite matrices; | |
mobility matrix = m2/V s); | |
diffusion matrix = m2/s); | |
recombination matrix = s−1); | |
Dirac distribution at x; | |
stationary solution for ; | |
M | greatest eigenvalue of ; |
K | norm of for ; |
Poincaré constant of ; | |
norm of ; | |
characteristic time, length, and temperature (s, m, K); | |
adimensional space and time variables; | |
adimensional temperature, excitation carriers’ density, and electric potential; | |
adimensional parameters; | |
normalized matrices; | |
decay time, fast and slow (s); | |
electron-hole and excitons’ densities (m−3); | |
electron-hole and excitons’ fractions of ; | |
recombination parameters from [7]. |
References
- Fok, M.V. Introduction to Luminescence Kinetics of Crystal Phosphors; Nauka: Moscow, Russia, 1964. (In Russian) [Google Scholar]
- Antonov-Romanovskiy, V.V. Photoluminescence Kinetics of Crystal Phosphors; Nauka: Moscow, Russia, 1966. (In Russian) [Google Scholar]
- Lu, X.; Gridin, S.; Williams, R.T.; Mayhugh, M.R.; Gektin, A.; Syntfeld-Kazuch, A.; Swiderski, L.; Moszynski, M. Energy-Dependent Scintillation Pulse Shape and Proportionality of Decay Components for CsI:Tl: Modeling with Transport and Rate Equations. Phys. Rev. Appl. 2017, 7, 014007. [Google Scholar] [CrossRef] [Green Version]
- Daví, F. A Continuum Theory of Scintillation in Inorganic Scintillating Crystals. arXiv, 2019; arXiv:1708.02269. [Google Scholar]
- Albinus, G.; Gajewski, H.; Hünlich, R. Thermodynamic design of energy models of semiconductor devices. Nonlinearity 2002, 15, 367–383. [Google Scholar] [CrossRef]
- Fellner, K.; Kniely, M. On the entropy method and exponential convergence to equilibrium for a recombination-drift-diffusion system with self-consistent potential. Appl. Math. Lett. 2018, 79, 196–204. [Google Scholar] [CrossRef]
- Bizarri, G.; Moses, W.W.; Singh, J.; Vasil’ev, A.N.; Williams, R.T. An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 2009, 105, 044507. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, J.E. Energy and length scales in scintillator nonproportionality. Nucl. Instrum. Methods Phys. Res. 2007, A570, 72–83. [Google Scholar] [CrossRef]
- Bethe, H.; Ashkin, J. Experimental Nuclear Physics. In Passage of Radiation Through Matter; Segre, E., Ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 1952; Volume I, pp. 166–357. [Google Scholar]
- Ziegler, J.F. The Stopping of Energetic Light Ions in Elemental Matter. J. Appl. Phys./Rev. Appl. Phys. 1999, 85, 1249–1272. [Google Scholar] [CrossRef]
- Inokuti, M. Inelastic Collisions of Fast Charged Particles with Atoms and Molecules—The Bethe Theory Revisited. Rev. Mod. Phys. 1971, 43, 297–347. [Google Scholar] [CrossRef]
- Ulmer, W. Theoretical aspects of energy-range relations, stopping power and energy straggling of protons. Radiat. Phys. Chem. 2007, 76, 1089–1107. [Google Scholar] [CrossRef]
- Capriz, G. Springer Tracts in Natural Philosophy. In Continua with Microstructure; Springer: Berlin, Germany, 1989. [Google Scholar]
- Vasil’ev, A. From Luminescence Non-Linearity to Scintillation Non-Proportionality. IEEE Trans. Nucl. Sci. 2008, 55, 1054–1061. [Google Scholar] [CrossRef]
- Daví, F. Light yield, decay time and reaction diffusion-drift equation in scintillators. In Proceedings of INDAM Meeting Harnack’s Inequalities and Nonlinear Operators; Springer: Heidelberg, Germany, 2019. [Google Scholar]
- Bizarri, G.; Cherepy, N.J.; Chong, W.S.; Hull, G.; Moses, W.; Payne, S.A.; Singh, J.; Valentine, J.D.; Vasil’ev, A.N.; Williams, R.T. Progress in studying scintillator proportionality: Phenomenological model. IEEE Trans. Nucl. Sci. 2009, 56, 2313–2316. [Google Scholar] [CrossRef]
- Singh, J. Structure and optical properties of high light output halide scintillators. Phys. Rev. 2010, B82, 155145. [Google Scholar] [CrossRef]
- Singh, J. Study of nonproportionality in the light yield of inorganic scintillators. J. Appl. Phys. 2011, 110, 024503. [Google Scholar] [CrossRef]
- Singh, J.; Williams, R.T. (Eds.) Springer Series in Materials Science. In Excitonic and Photonic Processes in Materials; Springer: Heidelberg, Germany, 2015; Volume 203. [Google Scholar]
- Vasil’ev, A. Microtheory of Scintillation in Crystalline Materials. In Engineering of Scintillation Materials and Radiation Technologies; Springer Proceedings in Physics; Korzhik, M., Gektin, A., Eds.; Springer: Heidelberg, Germany, 2017; Volume 200, pp. 1–32. [Google Scholar]
- Khodyuk, I.V.; Dorenbos, P. Trends and patterns of scintillator nonproportionality. IEEE Trans. Nucl. Sci. 2012, 59, 3320–3331. [Google Scholar] [CrossRef]
- Moses, W.; Bizarri, G.; Williams, R.T.; Payne, S.A.; Vasil’ev, A.N.; Singh, J.; Li, Q.; Grim, J.Q.; Chong, W.S. The origins of scintillator non-proportionality. IEEE Trans. Nucl. Sci. 2012, 59, 2038–2044. [Google Scholar] [CrossRef]
- Khodyuk, I.V.; Quarati, F.G.A.; Alekhin, M.S.; Dorenbos, P. Charge carrier mobility and non proportionality of LaBr3:Ce scintillators. arXiv, 2012; arXiv:1209.5278. [Google Scholar]
- Grim, J.Q.; Li, Q.; Ucer, K.B.; Burger, A.; Bizarri, G.A.; Moses, W.W.; Williams, R.T. The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators. Phys. Status Solidi 2012, A209, 2421–2426. [Google Scholar] [CrossRef]
- Williams, R.T.; Grim, J.Q.; Li, Q.; Ucer, K.B.; Moses, W.W. Excitation density, diffusion-drift, and proportionality in scintillators. Phys. Status Solidi 2011, B248, 426–438. [Google Scholar] [CrossRef]
- Li, Q.; Grim, J.Q.; Williams, R.T.; Bizarri, G.A.; Moses, W.W. A transport-based model of material trends in nonproportionality of scintillators. J. Appl. Phys. 2011, 109, 123716. [Google Scholar] [CrossRef]
- Lu, X.; Li, Q.; Bizarri, G.A.; Yang, K.; Mayhugh, M.R.; Menge, P.R.; Williams, R.T. Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI:Tl at 295 K. Phys. Rev. 2015, B92, 115207. [Google Scholar] [CrossRef]
- Singh, J.; Koblov, A. Role of Nonlinear Excitation Quenching Processes and Carrier Diffusion on the Nonproporionality of Light Yield in Scintillators. IEEE Trans. Nucl. Sci. 2012, 59, 2045–2051. [Google Scholar] [CrossRef]
- Audev, B.P.; Aluker, E.D.; Belokurov, G.M.; Shvayko, V.N. Radiation-Stimulated Conductivity of Some Alkali Halides Induced by 50 ps Electron Pulse Irradiation. Phys. Status Solidi 1998, 208, 137. [Google Scholar] [CrossRef]
- Li, Q.; Grim, J.Q.; Williams, R.T.; Bizarri, G.A.; Moses, W.W. The role of hole mobility in scintillator proportionality. Nucl. Instrum. Methods Phys. Res. 2011, A652, 288–291. [Google Scholar] [CrossRef]
- Sibczyński, P.; Moszyński, M.; Szcześniak, T.; Czarnacki, W. Study of NaI(Tl) scintillator cooled down to liquid nitrogenum temperature. J. Instrum. 2012, 7. [Google Scholar] [CrossRef]
- Laval, M.; Moszynski, M.; Allemand, R.; Cormoreche, E.; Guinet, P.; Odru, R.; Vacher, J. Barium Fluoride Inorganic Scintillator for Subnanosecond Timing. Nucl. Instrum. Methods Phys. Res. 1983, A206, 169–176. [Google Scholar] [CrossRef]
- Melcher, C.L.; Schweitzer, J.S.; Peterson, C.A.; Manente, R.A.; Suzuki, H. Crystal Growth and Scintillation Properties of the Rare Earth Orthosilicates; Inorganic Scintillators and Their Applications (SCINT95); Delft University Press: Delft, The Netherlands, 1996; pp. 309–315. ISBN 90-407-1215-8. [Google Scholar]
- Shah, K.S.; Glodo, J.; Klugerman, M.; Cirignano, L.; Moses, W.W.; Derenzo, S.E.; Weber, M.J. LaCl3:Ce Scintillator for Gamma Ray Detection. IEEE Trans. Nucl. Sci. 2003, 50, 2410–2413. [Google Scholar] [CrossRef]
· | M | K | |||||
---|---|---|---|---|---|---|---|
NaI:Tl | 8 | 6.6 | 6.6 | 239 | - | 243 | 80 |
BaF2 | 1 | 2.25 | 2000 | 620 | 0.6 | 664 | 0.26 |
GSO:Ce | 1.5 | 3.4 | 33 | 600 | 56 | 669 | 6 |
LaCl3 | 5 | 3.64 | 33 | 213 | 20 | 215 | 16 |
E (KeV) | 1 | 10 | |||
---|---|---|---|---|---|
NaI:Tl | k | k + 0.22d | d + 0.73k | d + 0.36k | d + 0.33k |
BaF2 | k | k | k | k | k |
GSO:Ce | k | k | k | k | k + 0.11d |
LaCl3 | k | k | k + 0.19d | k + 0.35d | k + 0.37d |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daví, F. Decay Time Estimates by a Continuum Model for Inorganic Scintillators. Crystals 2019, 9, 41. https://doi.org/10.3390/cryst9010041
Daví F. Decay Time Estimates by a Continuum Model for Inorganic Scintillators. Crystals. 2019; 9(1):41. https://doi.org/10.3390/cryst9010041
Chicago/Turabian StyleDaví, Fabrizio. 2019. "Decay Time Estimates by a Continuum Model for Inorganic Scintillators" Crystals 9, no. 1: 41. https://doi.org/10.3390/cryst9010041
APA StyleDaví, F. (2019). Decay Time Estimates by a Continuum Model for Inorganic Scintillators. Crystals, 9(1), 41. https://doi.org/10.3390/cryst9010041