Synergistic Effects of Diatoms on Intumescent Flame Retardant High Impact Polystyrene System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatment of Diatoms
2.3. Preparation of IFR/Diatoms/HIPS Flame Retardant Compounds
2.4. Measurement and Characterization
3. Result and Discussion
3.1. SEM Photographs of the HIPS Compounds
3.2. Mechanical Property of the HIPS Compounds
3.3. Flame Retardancy of the HIPS Compounds
3.4. TGA and TG-IR of the HIPS Compounds
3.5. CCT of the HIPS Compounds
3.6. The SEM, Raman, XRD and FTIR Curves of Carbonaceous Char for the HIPS Compounds
3.7. Analysis of Flame Retardant Mechanism for the HIPS Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, K.; Cui, Z.K.; Yuan, Y.L.; Zhuang, Q.X.; Wang, T.X.; Liu, X.Y.; Han, Z.W. Synthesis, structure, and properties of high-impact polystyrene/octavinyl polyhedral oligomeric silsesquioxane nanocompounds. Polym. Compos. 2016, 37, 1049–1055. [Google Scholar] [CrossRef]
- Alhilfi, T.; Chambon, P.; Rannard, S.P. Architectural control of polystyrene physical properties using branched anionic polymerization initiated at ambient temperature. J. Polym. Sci. 2020, 58, 1426–1438. [Google Scholar] [CrossRef] [Green Version]
- Kazmer, D.O.; Grosskopf, C.M.; Rondeau, D.; Venoor, V. Design and evaluation of general purpose, barrier, and multichannel plasticating extrusion screws. Polym. Eng. Sci. 2020, 60, 752–764. [Google Scholar] [CrossRef] [Green Version]
- Kenyó, C.; Hári, J.; Renner, K.; Kröhnke, C.; Pukánszky, B. Effect of matrix characteristics on the properties of high-impact polystyrene/zeolite functional packaging materials. Ind. Eng. Chem. Res. 2014, 53, 19208–19215. [Google Scholar] [CrossRef]
- Garcia-Ivars, J.; Wang, X.X.; Iborra-Clar, M.I. Application of post-consumer recycled high-impact polystyrene in the preparation of phase-inversion membranes for low-pressure membrane processes. Sep. Purif. Technol. 2017, 175, 340–351. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Guo, Y.; Lu, C.; Pan, B.; Peng, S.; Ma, J.; Niu, Q. Effect of carbon black on the thermal degradation and flammability properties of flame-retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polym. Compos. 2018, 39, 770–782. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Shi, X.; Liang, J.; Jia, Z.; Shi, G. Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites. Polym. Compos. 2019, 40, 202–209. [Google Scholar] [CrossRef]
- Ding, J.; Tao, Z.; Zuo, X.; Fan, L.; Yang, S. Preparation and properties of halogen-free flame retardant epoxy resins with phosphorus-containing siloxanes. Polym. Bull. 2009, 62, 829–841. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Y.Z.; Yang, B.; Liu, Y. A novel intumescent flame-retardant polyethylene system. Macromol. Mater. Eng. 2010, 291, 247–253. [Google Scholar] [CrossRef]
- Chavali, K.S.; Pethsangave, D.A.; Patankar, K.C.; Khose, R.V.; Some, S. Graphene-based intumescent flame retardant on cotton fabric. J. Mater. Sci. 2020, 55, 14197–14210. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Z.; Liang, H. Microencapsulation of ammonium polyphosphate: Preparation, characterization, and its flame retardance in polypropylene. Polym. Compos. 2010, 29, 854–860. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Yang, R. Polylactic acid flame-retarded by nano-compound of form ii ammonium polyphosphate with montmorillonite. J. Fire Sci. 2021, 39, 495–511. [Google Scholar] [CrossRef]
- Tarakcılar, A.R. The effects of intumescent flame retardant including ammonium polyphosphate/pentaerythritol and fly ash fillers on the physicomechanical properties of rigid polyurethane foams. J. Appl. Polym. Sci. 2015, 120, 2095–2102. [Google Scholar] [CrossRef]
- Li, N.; Xia, Y.; Mao, Z.; Wang, L.; Guan, Y.; Zheng, A. Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polym. Degrad. Stabil. 2012, 97, 1737–1744. [Google Scholar] [CrossRef]
- Zheng, X.; Wilkie, C.A. Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polym. Degrad. Stabil. 2003, 81, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Almeras, X.; Bras, L.M.; Hornsby, P.; Bourbigot, S.; Marosi, G.; Keszei, S.; Poutch, F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym. Degrad. Stabil. 2003, 82, 325–331. [Google Scholar] [CrossRef]
- Marosi, G.; Marton, A.; Anna, P.; Bertalan, G.; Marosföi, B.; Szép, A. Ceramic precursor in flame retardant systems. Polym. Degrad. Stabil. 2002, 77, 259–265. [Google Scholar] [CrossRef]
- Liu, W.; Shi, R.; Zhang, Z.J.; Ge, X.G.; Li, P.L.; Chen, X.S. Facile strategy to fabricate the flame retardant polyamide 66 fabric modified with an inorganic-organic hybrid structure. ACS Appl. Mater. Inter. 2021, 13, 9122–9133. [Google Scholar] [CrossRef]
- Attia, N.F.; Afifi, H.A.; Hassan, M.A. Synergistic study of carbon nanotubes, rice husk ash and flame retardant materials on the flammability of polystyrene nanocomposites. Mater. Today Proc. 2015, 2, 3998–4005. [Google Scholar] [CrossRef]
- Attia, N.F. Organic nanoparticles as promising flame retardant materials for thermoplastic polymers. J. Therm. Anal. Calorim. 2017, 127, 2273–2282. [Google Scholar] [CrossRef]
- Cavodeau, F.; Otazaghine, B.; Sonnier, R.; Lopez-Cuesta, J.M.; Christelle, D. Fire retardancy of ethylene-vinyl acetate composites-Evaluation of synergistic effects between ATH and diatomite fillers. Polym. Degrad. Stabil. 2016, 129, 246–259. [Google Scholar] [CrossRef]
- Song, W.; Lan, Y.; Wang, J.; Zhang, C. Synergistic effect of diatomite and intumescent flame retardant on flame retardant properties of silicone rubber composites. J. Rubber Res. 2021, 24, 489–499. [Google Scholar] [CrossRef]
- Wang, G.; Li, W.; Bai, S.; Wang, Q. Synergistic effects of flame retardants on the flammability and foamability of PS foams prepared by supercritical carbon dioxide foaming. Acs Omega 2019, 4, 9306–9315. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ma, P.; Ma, Y.; Xu, D.; Wang, P.; Yang, R. Synergistic effect of multiwalled carbon nanotubes and an intumescent flame retardant: Toward an ideal electromagnetic interference shielding material with excellent flame retardancy. J. Appl. Polym. Sci. 2017, 134, 45088. [Google Scholar] [CrossRef]
- Zhu, Z.; Rao, W.; Kang, A.H.; Liao, W.; Wang, Y.Z. Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polym. Degrad. Stabil. 2018, 154, 1–9. [Google Scholar] [CrossRef]
- Tai, Q.; Song, L.; Feng, H.; Tao, Y.; Yuen, R.K.; Hu, Y. Investigation of a combination of novel polyphosphoramide and boron-containing compounds on the thermal and flame-retardant properties of polystyrene. J. Polym. Res. 2012, 19, 9763. [Google Scholar] [CrossRef]
- Guo, J.; Xu, F.; Guo, Y.; Wang, W.; Cui, J. Synergistic flame-retardant effect of nano Al(OH)3-phosphorus hybrid polymer/polystyrene composite. Mater. Rev. 2019, 43, 971–980. [Google Scholar]
- Liu, J.; Li, H.; Chang, H.; He, Y.; Xu, A.; Pan, B. Structure and thermal property of intumescent char produced by flame-retardant high-impact polystyrene/expandable graphite/microencapsulated red phosphorus composite. Fire Mater. 2019, 43, 971–980. [Google Scholar] [CrossRef]
- Wang, J.S.; Liu, Y.; Zhao, H.B. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym. Degrad. Stabil. 2009, 94, 625–631. [Google Scholar] [CrossRef]
- Nazari, D.; Bahri, L.N.; Nekoomanesh, M.; Jalilian, S.M.; Rezaie, R.; Mirmohammadi, S.A. New high impact polystyrene: Use of poly(1-hexene) and poly(1-hexene-co-hexadiene) as impact modifiers. Polym. Adv. Technol. 2018, 29, 1603–1612. [Google Scholar] [CrossRef]
- Yi, J.; Yin, H.; Cai, X. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent. J. Therm. Anal. Calorim. 2013, 111, 725–734. [Google Scholar] [CrossRef]
- Galina, G.; Bravin, E.; Badalucco, C.; Audisio, G.; Armanini, M.; Chirico, A.D. Application of cone calorimeter for the assessment of class of flame retardants for polypropylene. Fire Mater. 1998, 22, 15–28. [Google Scholar] [CrossRef]
- Du, Z.; Yang, Y.; Bai, Y.; Wang, L.; Su, L.; Chen, Y.; Hu, J. Laser Raman detection for oral cancer based on an adaptive Gaussian process classification method with posterior probabilities. Laser Phys. 2013, 23, 035603. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A. Saito R Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Winder, S.M.; Bender, J.W. Precipitation and delamination of crystalline graphite bubbles from molten iron, nickel and cobalt by splat cooling. Carbon 2008, 46, 940–948. [Google Scholar] [CrossRef]
- Chen, C.H.; Soo, J.C.; Young, L.H.; Wu, T.N.; Yoon, C.; Lai, C.Y.; Tsai, P.J. Effect of the quartz particle size on XRD quantifications and its implications for field collected samples. Aerosol Air Qual. Res. 2013, 14, 1573–1583. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Wang, X.; Xie, X.; Sun, J. Degradation behavior of mixed and isolated aromatic ring containing VOCs: Landiatomsuir-Hinshelwood kinetics, photodegradation, In-situ FTIR and DFT studies. J. Environ. Chem. Eng. 2021, 9, 105069. [Google Scholar] [CrossRef]
- Rajaei, M.; Kim, N.K.; Bickerton, S.; Bhattacharyya, D. A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Compos. Part B Eng. 2019, 165, 65–74. [Google Scholar] [CrossRef]
Samples | HIPS | HIPS/IFR | HIPS-1 | HIPS-2 | HIPS-3 | HIPS-4 |
---|---|---|---|---|---|---|
HIPS/wt% | 100 | 70 | 70 | 70 | 70 | 70 |
IFR/wt% | 0 | 30 | 29 | 28 | 27 | 26 |
diatoms/wt% | 0 | 0 | 1 | 2 | 3 | 4 |
HIPS/wt% | 100 | 70 | 70 | 70 | 70 | 70 |
Samples | HIPS | HIPS/IFR | HIPS-1 | HIPS-2 | HIPS-3 | HIPS-4 |
---|---|---|---|---|---|---|
T5wt%/°C | 383.2 | 292.9 | 292.5 | 280.6 | 284.8 | 285.1 |
Tmax/°C | 434.9 | 463.9 | 455.2 | 456.7 | 455.9 | 453.9 |
char residue/% | 0.0 | 14.6 | 14.2 | 17.8 | 15.4 | 15.6 |
Samples | HIPS | HIPS/IFR | HIPS-2 |
---|---|---|---|
PHRR/(kW/m2) | 937.22 | 530.71 | 460.58 |
THR/(MJ/m2) | 62.7 | 48.9 | 32.9 |
TTI/s | 40 | 35 | 23 |
Av-EHC/(MJ/kg) | 32.4 | 29.6 | 25.3 |
TSP/(m2) | 29 | 22 | 17 |
FIGRA/(kW/m2·s) | 6.8 | 5.5 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Zhang, M.; Li, X.; Mao, S.; Wei, Y. Synergistic Effects of Diatoms on Intumescent Flame Retardant High Impact Polystyrene System. Polymers 2022, 14, 4453. https://doi.org/10.3390/polym14204453
Lin F, Zhang M, Li X, Mao S, Wei Y. Synergistic Effects of Diatoms on Intumescent Flame Retardant High Impact Polystyrene System. Polymers. 2022; 14(20):4453. https://doi.org/10.3390/polym14204453
Chicago/Turabian StyleLin, Fuhua, Mi Zhang, Xiangyang Li, Shuangdan Mao, and Yinghui Wei. 2022. "Synergistic Effects of Diatoms on Intumescent Flame Retardant High Impact Polystyrene System" Polymers 14, no. 20: 4453. https://doi.org/10.3390/polym14204453