Investigation of Carbon Fiber on the Tensile Property of FDM-Produced PLA Specimen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation
2.2. Characterization
3. Results and Discussion
3.1. DSC Curves Analysis
3.2. XRD Detection Results
3.3. Tensile Performance Measurement
3.4. Fractured Morphology Observation
3.5. Reinforcement Mechanism
4. Conclusions
- (1)
- DSC curves showed that the crystallinity of the PLA-CF specimen was higher than the PLA sample. The SEM results indicated that the agglomeration of carbon fibers emerged in a cross-section of the PLA-CF filament, and the terrible bonding interface between carbon fiber and PLA;
- (2)
- XRD patterns illustrated the crystal structure of the PLA specimen varied from non-crystalline to α crystalline after the carbon fiber was introduced. Meanwhile, the diffraction peak of PLA-CF at 16.6° and 19.0° widened, which showed that CFs refined the crystal size of PLA;
- (3)
- After the incorporation of carbon fiber, the tensile strength of the PLA specimen reduced from 54.51 to 49.41 MPa, while the Young’s modulus and elongation-at-break increased from 1.04 GPa and 6.26%, to 1.26 GPa and 7.81%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.G.; Wang, Y.Q.; Wu, B.C.; Cui, C.Z.; Guo, Y.; Yan, C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.; Liu, X.; Ren, F. Bifurcation Diagram and Dynamic Response of a Drill String Applied in NGH Drilling. Processes 2022, 10, 1111. [Google Scholar] [CrossRef]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Belarbi, Y.E.; Guessasma, S.; Belhabib, S.; Benmahiddine, F.; Hamami, A.E. Effect of Printing Parameters on the Mechanical Behavior of PLA-Flax Printed Structures by Fused Deposition Modelling. Materials 2021, 14, 5883. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liu, Z.G.; Gu, H.W.; Cui, C.Z.; Hao, J.B. Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating. J. Mater. Res. 2019, 34, 3412–3419. [Google Scholar] [CrossRef]
- Chacón, J.; Caminero, M.; García-Plaza, E.; Núñez, P. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Boparai, K.S.; Singh, R.; Singh, H. Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp. J. 2016, 22, 281–299. [Google Scholar] [CrossRef]
- John, R.C.D.; Alejandro, H.; Espera, J.R.; Chen, Q.Y.; Rigoberto, C.A. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar]
- Shipesh, R.R.; Harshit, K.D. Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp. J. 2018, 24, 1317–1324. [Google Scholar]
- Boesch, E.; Siadat, A.; Rivette, M.; Baqai, A.A. Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. Int. J. Adv. Manuf. Technol. 2019, 101, 1215–1226. [Google Scholar]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Lebedev, S.M.; Geflfle, O.S.; Amitov, E.T.; Zhuravlev, D.V.; Berchuk, D.Y.; Mikutskiy, E.A. Mechanical properties of PLA-based composites for fused deposition modeling technology. Int. J. Adv. Manuf. Technol. 2018, 97, 511–518. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos. Part B 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Luo, Y.B.; Lin, Z.C.; Guo, G. Biodegradation Assessment of Poly (Lactic Acid) Filled with Functionalized Titania Nanoparticles (PLA/TiO2) under Compost Conditions. Nanoscale Res. Lett. 2019, 14, 56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Z.; Chen, L.; Mulholland, T.; Osswald, T.A. Effect of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling. Polym. Adv. Technol. 2019, 30, 2122–2135. [Google Scholar] [CrossRef]
- Liu, T.; Yu, X.J.; Yu, F.M.; Zhao, X.L.; Liu, A.; Wang, J.H.; Wang, X.Z.; Liu, T.L. Isothermal Crystallization Kinetics of Fiber/Polylactic Acid Composites and Morphology. Polym.-Plast. Technol. Eng. 2012, 51, 597–604. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, W.C.; Tong, B.; Yang, R.J. Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS. Chin. J. Polym. Sci. 2018, 36, 871–879. [Google Scholar] [CrossRef]
- Frone, A.N.; Panaitescu, D.M.; Chiulan, I.; Nicolae, C.A.; Vuluga, Z.; Vitelaru, C.; Damian, C.M. The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. J. Mater. Sci. 2016, 51, 9771–9791. [Google Scholar] [CrossRef]
- Haafiz, M.K.M.; Hassan, A.; Khalil, H.P.S.A.; Khan, I.; Inuwa, I.M.; Islam, M.S.; Hossain, M.S.; Syakir, M.I.; Fazita, M.R.N. Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly(lactic acid). Polym. Test. 2015, 48, 133–139. [Google Scholar] [CrossRef]
- Liu, W.Y.; Lipner, J.; Moran, C.H.; Feng, L.Z.; Li, X.Y.; Thomopoulos, S.; Xia, Y.N. Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment. Adv. Mater. 2015, 27, 2583–2588. [Google Scholar] [CrossRef]
- Azlin, M.N.M.; Sapuan, S.M.; Zuhri, M.Y.M.; Zainudin, E.S. Mechanical, Morphological and Thermal Properties of Woven Polyester Fiber Reinforced Polylactic Acid (PLA) Composites. Fibers Polym. 2021, 23, 234–242. [Google Scholar] [CrossRef]
- Li, C.H.; Guo, J.W.; Jiang, T.; Zhang, X.M.; Xia, L.C.; Wu, H.; Guo, S.Y.; Zhang, X. Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite. Carbon 2017, 129, 720–729. [Google Scholar] [CrossRef]
- Jin, X.; Chen, X.; Cheng, Q.; Zhang, N.W.; Cai, S.Y.; Ren, J. Non-isothermal crystallization kinetics of ramie fiber-reinforced polylactic acid biocomposite. RSC Adv. 2017, 7, 46014–46021. [Google Scholar] [CrossRef]
- Liao, Y.H.; Liu, C.; Coppola, B.; Barra, G.; Di Miao, L.; Incarnato, L.; Lafdi, K. Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers 2019, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
Specimen | PLA | PLA-CF |
---|---|---|
Printing speed (mm/s) | 5 | 5 |
Print temperature (°C) | 210 | 210 |
Platform temperature (°C) | 60 | 60 |
Nozzle diameter (mm) | 0.4 | 0.4 |
Layer thickness (mm) | 0.9 | 0.9 |
Feed-stock speed (mm/s) | 10 | 10 |
Infill density (%) | 100 | 100 |
Filament distance (mm) | 0.4 | 0.4 |
Specimens | Tg (°C) | Tc (°C) | Tm (°C) | χc (%) |
---|---|---|---|---|
PLA | 59.46 | 133.05 | 164.91 | 4.15 |
PLA-CF | 60.23 | 110.63 | 166.87 | 9.01 |
Specimen | PLA | PLA-CF |
---|---|---|
Tensile strength (MPa) | 54.51 | 49.41 |
Young’s Modulus (GPa) | 1.04 | 1.26 |
Elongation-at-break (%) | 6.26 | 7.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Cui, T.; Yue, Y.; Li, C.; Guo, X.; Jia, X.; Wang, B. Investigation of Carbon Fiber on the Tensile Property of FDM-Produced PLA Specimen. Polymers 2022, 14, 5230. https://doi.org/10.3390/polym14235230
Cao M, Cui T, Yue Y, Li C, Guo X, Jia X, Wang B. Investigation of Carbon Fiber on the Tensile Property of FDM-Produced PLA Specimen. Polymers. 2022; 14(23):5230. https://doi.org/10.3390/polym14235230
Chicago/Turabian StyleCao, Mengyu, Tianqi Cui, Yuhang Yue, Chaoyu Li, Xue Guo, Xin Jia, and Baojin Wang. 2022. "Investigation of Carbon Fiber on the Tensile Property of FDM-Produced PLA Specimen" Polymers 14, no. 23: 5230. https://doi.org/10.3390/polym14235230