Tailoring/Tuning Properties of Polyester Urea-Urethanes through Hybridization with Titania Obtained Using the Sol–Gel Process
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis
2.1.1. Synthesis of the Polyester (Urea-Urethanes) (PEUUs)
2.1.2. Synthesis of the Hybrid Materials (THPs)
2.2. Characterization of the THPs
2.3. Degradability Assay
2.4. Cytotoxicity Test
Statistical Analysis of Cytotoxicity
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Téllez, D.A.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M.; Mazo, M.A.; Rubio, J.; Tamayo, A. Surface effects on the degradation mechanism of bioactive PDMS-SiO2-CaO-P2O5 hybrid materials intended for bone regeneration. Ceram. Int. 2017, 43, 476–483. [Google Scholar] [CrossRef]
- Sanchez, C.; Shea, K.J.; Kitagawa, S. Recent progress in hybrid materials science. Chem. Soc. Rev. 2011, 40, 471–472. [Google Scholar] [CrossRef]
- Abalymov, A.; Parakhonskiy, B.; Skirtach, A.G. Polymer-and hybrid-based biomaterials for interstitial, connective, vascular, nerve, visceral and musculoskeletal tissue engineering. Polymers 2020, 12, 620. [Google Scholar] [CrossRef] [PubMed]
- Rubio Hernández-Sampelayo, A.; Navarro, R.; Marcos-Fernández, Á. Preparation of High Molecular Weight Poly (urethane-urea) s Bearing Deactivated Diamines. Polymers 2021, 13, 1914. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.P.; Wilems, T.; Mohiuddin, S.; Cosgriff-Hernandez, E.M. Synthesis and characterization of plug-and-play polyurethane urea elastomers as biodegradable matrixes for tissue engineering applications. ACS Biomater. Sci. Eng. 2017, 3, 3493–3502. [Google Scholar] [CrossRef] [PubMed]
- Szczepańczyk, P.; Szlachta, M.; Złocista-Szewczyk, N.; Chłopek, J.; Pielichowska, K. Recent developments in polyurethane-based materials for bone tissue engineering. Polymers 2021, 13, 946. [Google Scholar] [CrossRef]
- Fernando, S.; McEnery, M.; Guelcher, S. Polyurethanes for bone tissue engineering. Adv. Polyurethane Biomater. 2016, 481–501. [Google Scholar]
- Miyazaki, T.; Imanaka, S.; Akaike, J. Relationship between valence of titania and apatite mineralization behavior in simulated body environment. J. Am. Ceram. Soc. 2021, 104, 3545–3553. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Papale, F.; Lamanna, G. TiO2/pcl hybrid layers prepared via sol-gel dip coating for the surface modification of titanium implants: Characterization and bioactivity evaluation. Appl. Mech. Mater. 2015, 760, 353–358. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, W.; Wu, J.-M. Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. J. Hazard. Mater. 2018, 343, 285–297. [Google Scholar] [CrossRef]
- Eddy, D.R.; Luthfiah, A.; Permana, M.D.; Deawati, Y.; Firdaus, M.L.; Rahayu, I.; Izumi, Y. Rapid Probing of Self-Cleaning Activity on Polyester Coated by Titania–Natural Silica Nanocomposite Using Digital Image-Based Colorimetry. ACS Omega 2023, 8, 7858–7867. [Google Scholar] [CrossRef]
- Hara, S.; Aisu, J.; Nishizaki, Y.; Kato, H.; Sanae, G.; Kurebayashi, S.; Shimizu, S.; Ikake, H. Bulk structure of poly (ethylene glycol)/Titania hybrid system and the evaluation of their influence on apatite growth using simulated body fluid (SBF). Polym. Test. 2021, 94, 106984. [Google Scholar] [CrossRef]
- Al Sagheer, F.; Ahmad, Z. Preparation and characterization of chemically bonded aramid-titania hybrids using isocyanatopropyltrimethoxysilane. J. Sol-Gel Sci. Technol. 2013, 65, 243–254. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Gu, G.; Wu, L. Microstructure and properties of polyester-based polyurethane/titania hybrid films prepared by sol–gel process. Polymer 2006, 47, 1640–1648. [Google Scholar] [CrossRef]
- Chen, Q.; Miyaji, F.; Kokubo, T.; Nakamura, T. Apatite formation on PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol–gel process. Biomaterials 1999, 20, 1127–1132. [Google Scholar] [CrossRef]
- González-García, D.M.; Jurado, L.T.; Jiménez-Gallegos, R.; Rodríguez-Lorenzo, L.M. Novel non-cytotoxic, bioactive and biodegradable hybrid materials based on polyurethanes/TiO2 for biomedical applications. Mater. Sci. Eng. C 2017, 75, 375–384. [Google Scholar] [CrossRef]
- González-García, D.M.; Marcos-Fernández, Á.; Rodríguez-Lorenzo, L.M.; Jiménez-Gallegos, R.; Vargas-Becerril, N.; Téllez-Jurado, L. Synthesis and in vitro cytocompatibility of segmented poly (ester-urethane) s and poly (ester-urea-urethane) s for bone tissue engineering. Polymers 2018, 10, 991. [Google Scholar] [CrossRef]
- Abraham, G.A.; Marcos Fernández, A.; San Román, J. Bioresorbable poly (ester-ether urethane) s fromL-lysine diisocyanate and triblock copolymers with different hydrophilic character. J. Biomed. Mater. Res. Part A 2006, 76, 729–736. [Google Scholar] [CrossRef]
- Báez, J.E.; Ramírez, D.; Valentín, J.L.; Marcos-Fernández, A.N. Biodegradable poly (ester–urethane–amide) s based on poly (ε-caprolactone) and diamide–diol chain extenders with crystalline hard segments: Synthesis and characterization. Macromolecules 2012, 45, 6966–6980. [Google Scholar] [CrossRef]
- Garrett, J.; Runt, J.; Lin, J. Microphase separation of segmented poly (urethane urea) block copolymers. Macromolecules 2000, 33, 6353–6359. [Google Scholar] [CrossRef]
- Boerio, F.; Koenig, J. Vibrational spectroscopy of polymers. J. Macromol. Sci. Rev. Macromol. Chem. 1972, 7, 209–249. [Google Scholar] [CrossRef]
- Yang, C.; Tang, Y.; Lam, W.; Lu, W.W.; Gao, P.; Zhao, C.; Yuen, M. Moisture-cured elastomeric transparent UV and X-ray shielding organic–inorganic hybrids. J. Mater. Sci. 2010, 45, 3588–3594. [Google Scholar] [CrossRef]
- Ochoa, Y.; Ortegón, Y.; Vargas, M.; Páez, J. Síntesis de TiO2, fase anatasa, por el método Pechini. Supl. De La Rev. Latinoam. De Metal. Y Mater. 2009, 3, 931–937. [Google Scholar]
- Pignanelli, F.; Romero, M.; Castiglioni, J.; Faccio, R.; Mombrú, A.W. Novel synergistic in situ synthesis of lithium-ion poly (ethylene citrate)-TiO2 nanocomposites as promising fluorine-free solid polymer electrolytes for lithium batteries. J. Phys. Chem. Solids 2019, 135, 109082. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Ding, X.-Z.; Qi, Z.-Z.; He, Y.-Z. Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process. J. Mater. Sci. Lett. 1995, 14, 21–22. [Google Scholar] [CrossRef]
- Yaghoubi, H.; Dayerizadeh, A.; Han, S.; Mulaj, M.; Gao, W.; Li, X.; Muschol, M.; Ma, S.; Takshi, A. The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate. J. Phys. D Appl. Phys. 2013, 46, 505316. [Google Scholar] [CrossRef]
- Javni, I.; Petrović, Z.S.; Guo, A.; Fuller, R. Thermal stability of polyurethanes based on vegetable oils. J. Appl. Polym. Sci. 2000, 77, 1723–1734. [Google Scholar] [CrossRef]
- Jiménez-Gallegos, R.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Modulation of the hydrophilic character and influence on the biocompatibility of polyurethane-siloxane based hybrids. Bol. Soc. Esp. Ceram. Vidr. 2011, 50, 1–8. [Google Scholar] [CrossRef]
- Oertel, G. Polyurethane Handbook, 2nd ed.; Hanser: Munich, Germany, 1993. [Google Scholar]
- Bagdi, K.; Molnár, K.; Sajo, I.; Pukánszky, B. Specific interactions, structure and properties in segmented polyurethane elastomers. Express Polym. Lett. 2011, 5, 417–427. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.; Yang, C.; Chen, M.; Liu, X. Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog. Org. Coat. 2011, 70, 1–8. [Google Scholar] [CrossRef]
- Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 1995, 7, 663–671. [Google Scholar] [CrossRef]
- Catauro, M.; Renella, R.; Papale, F.; Ciprioti, S.V. Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage. Mater. Sci. Eng. C 2016, 61, 51–55. [Google Scholar] [CrossRef]
- Catauro, M.; Papale, F.; Bollino, F.; Gallicchio, M.; Pacifico, S. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique. Mater. Sci. Eng. C 2014, 40, 253–259. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Sanchez, C.; Ribot, F. Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. N. J. Chem. 1994, 18, 1007–1047. [Google Scholar]
- Gorna, K.; Gogolewski, S. Molecular stability, mechanical properties, surface characteristics and sterility of biodegradable polyurethanes treated with low-temperature plasma. Polym. Degrad. Stab. 2003, 79, 475–485. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications. Mater. Sci. Eng. C 2015, 47, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Catauro, M.; Papale, F.; Bollino, F. Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants. J. Non-Cryst. Solids 2015, 415, 9–15. [Google Scholar] [CrossRef]
- Che, X.-C.; Jin, Y.-Z.; Lee, Y.-S. Preparation of nano-TiO2/polyurethane emulsions via in situ RAFT polymerization. Prog. Org. Coat. 2010, 69, 534–538. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Nan, Q.; Ye, X.; Sun, Y.; Zhang, F.; Wang, Z. Preparation and properties of optically active polyurethane/TiO2 nanocomposites derived from optically pure 1, 1′-binaphthyl. Eur. Polym. J. 2007, 43, 4151–4159. [Google Scholar] [CrossRef]
- Mirabedini, S.; Sabzi, M.; Zohuriaan-Mehr, J.; Atai, M.; Behzadnasab, M. Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Appl. Surf. Sci. 2011, 257, 4196–4203. [Google Scholar] [CrossRef]
- Demétrio da Silva, V.; dos Santos, L.M.; Subda, S.M.; Ligabue, R.; Seferin, M.; Carone, C.L.; Einloft, S. Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym. Bull. 2013, 70, 1819–1833. [Google Scholar] [CrossRef]
Sample Codes of PEUUs | PEUUs Mw (g/mol) | PEUUs Mw/Mn | Contact Angle | Vickers Hardness (MPa) | Sample Codes of Hybrids | Contact Angle | Vickers Hardness (MPa) |
---|---|---|---|---|---|---|---|
PEUU530 | 27,600 | 1.2 | 70° | 8 | THP530 | 48° | 10 |
PEUU1000 | 136,700 | 1.8 | 73° | 35 | THP1000 | 45° | 50 |
PEUU2000 | 196,300 | 2.0 | 77° | 48 | THP2000 | 40° | 60 |
Hybrid | Heat Sweep (−80–180 °C) | |||
---|---|---|---|---|
Tc * SS | Tf * SS | Tf * HS | Tg | |
THP530 | ----- | ----- | ----- | −35.65 |
THP1000 | ----- | ----- | 126 | −51.94 |
THP2000 | −3.29 | 41.88 | ----- | −59.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-García, D.M.; Rodríguez-Lorenzo, L.M.; Marcos-Fernández, Á.; Jiménez-Gallegos, R.; Sánchez-Téllez, D.A.; Téllez-Jurado, L. Tailoring/Tuning Properties of Polyester Urea-Urethanes through Hybridization with Titania Obtained Using the Sol–Gel Process. Polymers 2023, 15, 2299. https://doi.org/10.3390/polym15102299
González-García DM, Rodríguez-Lorenzo LM, Marcos-Fernández Á, Jiménez-Gallegos R, Sánchez-Téllez DA, Téllez-Jurado L. Tailoring/Tuning Properties of Polyester Urea-Urethanes through Hybridization with Titania Obtained Using the Sol–Gel Process. Polymers. 2023; 15(10):2299. https://doi.org/10.3390/polym15102299
Chicago/Turabian StyleGonzález-García, Dulce María, Luis María Rodríguez-Lorenzo, Ángel Marcos-Fernández, Rodrigo Jiménez-Gallegos, Daniela Anahí Sánchez-Téllez, and Lucía Téllez-Jurado. 2023. "Tailoring/Tuning Properties of Polyester Urea-Urethanes through Hybridization with Titania Obtained Using the Sol–Gel Process" Polymers 15, no. 10: 2299. https://doi.org/10.3390/polym15102299