Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Emulsion Polymerization of PFMA
2.3. Characterization of PFMA Nanoparticles
2.4. Preparation of PFMA Dielectric Layer
2.5. General Characterization of PFMA Dielectric Layer
2.6. Electrowetting Test of PFMA Dielectric Layer
2.7. Dielectric Determination of PFMA Dielectric Layer
2.8. Breakdown Voltage (Vb) Measurements of PFMA Dielectric Layer
2.9. Adhesive Force Measurements of PFMA Dielectric Layer
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mugele, F.; Baret, J.-C. Electrowetting: From basics to applications. J. Phys. Condens. Matter 2005, 17, R705–R774. [Google Scholar] [CrossRef]
- Kim, D.Y.; Steckl, A.J. Electrowetting on paper for electronic paper display. ACS Appl. Mater. Interfaces 2010, 2, 3318–3323. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.A.; Feenstra, B.J. Video-speed electronic paper based on electrowetting. Nature 2003, 425, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Chiu, C.W.; Lee, T.M.; Chang, T.Y.; Wu, M.T.; Cheng, W.Y.; Kuo, S.W.; Lin, J.J. First fabrication of electrowetting display by using pigment-in-oil driving pixels. ACS Appl. Mater. Interfaces 2013, 5, 5914–5920. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Brien, R.; Njus, Z.; Kalwa, U.; Pandey, S. Motorized actuation system to perform droplet operations on printed plastic sheets. Lab Chip 2016, 16, 1861–1872. [Google Scholar] [CrossRef] [PubMed]
- Wijethunga, P.A.; Nanayakkara, Y.S.; Kunchala, P.; Armstrong, D.W.; Moon, H. On-chip drop-to-drop liquid microextraction coupled with real-time concentration monitoring technique. Anal. Chem. 2011, 83, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Murade, C.U.; Ende, D.V.D.; Mugele, F. High speed adaptive liquid microlens array. Opt. Express 2012, 20, 18180–18187. [Google Scholar] [CrossRef] [PubMed]
- Terrab, S.; Watson, A.M.; Roath, C.; Gopinath, J.T.; Bright, V.M. Adaptive electrowetting lens-prism element. Opt. Express 2015, 23, 25838–25845. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, C.; Wang, Q.; Zhou, X. Voltage-controlled optical filter based on electrowetting. Chin. Opt. Lett. 2014, 12, 121102. [Google Scholar] [CrossRef]
- Ozbay, B.N.; Losacco, J.T.; Cormack, R.; Weir, R.; Bright, V.M.; Gopinath, J.T.; Restrepo, D.; Gibson, E.A. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts. Opt. Lett. 2015, 40, 2553–2556. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.C.; Kim, C.-J.C. Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review. J. Adhes. Sci. Technol. 2012, 26, 1747–1771. [Google Scholar] [CrossRef]
- Verplanck, N.; Galopin, E.; Camart, J.C.; Thomy, V.; Coffinier, Y.; Boukherroub, R. Reversible electrowetting on superhydrophobic silicon nanowires. Nano Lett. 2007, 7, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, F.; Brunet, P.; Coffinier, Y.; Thomy, V.; Blossey, R.; Boukherroub, R. Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures. Faraday Discuss. 2010, 146, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.H.; Chung, L.Y.; Yao, D.J. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer. Biomicrofluidics 2015, 9, 022403. [Google Scholar] [CrossRef] [PubMed]
- Cahill, B.P.; Giannitsis, A.T.; Land, R.; Gastrock, G.; Pliquett, U.; Frense, D.; Min, M.; Beckmann, D. Reversible electrowetting on silanized silicon nitride. Sens. Actuators B Chem. 2010, 144, 380–386. [Google Scholar] [CrossRef]
- Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vitek, P.; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kizek, R. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide. Materials 2016, 9, 31. [Google Scholar] [CrossRef]
- Campbell, J.L.; Breedon, M.; Latham, K.; Kalantar-zadeh, K. Electrowetting of superhydrophobic ZnO nanorods. Langmuir 2008, 24, 5091–5098. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xia, J.; Lei, W.; Wang, B.P. Electrowetting on ZnO nanowires. Appl. Phys. A 2010, 99, 931–934. [Google Scholar] [CrossRef]
- Chen, L.Y.; Lai, C.H.; Wu, P.W.; Fan, S.K. Electrowetting of Superhydrophobic ZnO Inverse Opals. J. Electrochem. Soc. 2011, 158, 93–99. [Google Scholar] [CrossRef]
- Papadopoulou, E.L.; Pagkozidis, A.; Barberoglou, M.; Fotakis, C.; Stratakis, E. Electrowetting Properties of ZnO and TiO2 Nanostructured Thin Films. J. Phys. Chem. C 2010, 114, 10249–10253. [Google Scholar] [CrossRef]
- Mats, L.; Bramwell, A.; Dupont, J.; Liu, G.; Oleschuk, R. Electrowetting on superhydrophobic natural (Colocasia) and synthetic surfaces based upon fluorinated silica nanoparticles. Microelectron. Eng. 2015, 148, 91–97. [Google Scholar] [CrossRef]
- Ghazzal, M.N.; Joseph, M.; Kebaili, H.; De Coninck, J.; Gaigneaux, E.M. Tuning the selectivity and sensitivity of mesoporous dielectric multilayers by modifiying the hydrophobic–hydrophilic balance of the silica layer. J. Mater. Chem. 2012, 22, 22526–22532. [Google Scholar] [CrossRef]
- Bienia, M.; Catherine Quilliet, A.; Vallade, M. Modification of Drop Shape Controlled by Electrowetting. Langmuir 2003, 19, 9328–9333. [Google Scholar] [CrossRef]
- Welters, W.J.J.; Fokkink, L.G.J. Fast Electrically Switchable Capillary Effects. Langmuir 1998, 14, 1535–1538. [Google Scholar] [CrossRef]
- Klingner, A.; Juergen Buehrle, A.; Mugele, F. Capillary Bridges in Electric Fields. Langmuir 2004, 20, 6770–6777. [Google Scholar] [CrossRef] [PubMed]
- Banpurkar, A.; Sawane, Y.B.; Wadhai, S.M.; Murade, C.; Siretanu, I.; van den Ende, D.; Mugele, F. Spontaneous electrification of fluoropolymer-water interfaces probed by electrowetting. Faraday Discuss. 2017. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Cho, S.K.; Garrell, R.L.; Kim, C.J.C. Low voltage electrowetting-on-dielectric. J. Appl. Phys. 2002, 92, 4080–4087. [Google Scholar] [CrossRef]
- Burger, B.; Rabot, R. Design of low hysteresis electrowetting systems in non-aqueous media by the addition of low HLB amphiphilic compounds. Colloids Surf. A 2016, 510, 129–134. [Google Scholar] [CrossRef]
- Caputo, D.; Cesare, G.D.; Vecchio, N.L.; Nascetti, A.; Parisi, E.; Scipinotti, R. Polydimethylsiloxane material as hydrophobic and insulating layer in electrowetting-on-dielectric systems. Microelectron. J. 2014, 45, 1684–1690. [Google Scholar] [CrossRef]
- Tamaddoni, N.; Taylor, G.; Hepburn, T.; Michael, K.S.; Sarles, S.A. Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents. Soft Matter 2016, 12, 5096–5109. [Google Scholar] [CrossRef] [PubMed]
- Ta, V.D.; Dunn, A.; Wasley, T.J.; Li, J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Esenturk, E.; Connaughton, C.; Shephard, J.D. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl. Surf. Sci. 2016, 365, 153–159. [Google Scholar] [CrossRef]
- Chen, X.; He, T.; Jiang, H.; Wei, B.; Chen, G.; Fang, X.; Jin, M.; Hayes, R.A.; Zhou, G.; Shui, L. Screen-printing fabrication of electrowetting displays based on poly(imide siloxane) and polyimide. Displays 2015, 37, 79–85. [Google Scholar] [CrossRef]
- Kopp, D.; Zappe, H. Tubular astigmatism-tunable fluidic lens. Opt. Lett. 2016, 41, 2735–2738. [Google Scholar] [CrossRef] [PubMed]
- Klauk, H.; Huang, J.R.; Nichols, J.A.; Jackson, T.N. Ion-beam-deposited ultrathin transparent metal contacts. Thin Solid Films 2000, 366, 272–278. [Google Scholar] [CrossRef]
- Xiao, K.; Zhou, Y.; Kong, X.Y.; Xie, G.; Li, P.; Zhang, Z.; Wen, L.; Jiang, L. Electrostatic-Charge- and Electric-Field-Induced Smart Gating for Water Transportation. ACS Nano 2016, 10, 9703–9709. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, N.N. SU-8 as Hydrophobic and Dielectric Thin Film in Electrowetting-on-Dielectric Based Microfluidics Device. J. Nanotechnol. 2012, 2012, 312784. [Google Scholar] [CrossRef]
- Liu, H.; Dharmatilleke, S.; Maurya, D.K.; Tay, A.A.O. Dielectric materials for electrowetting-on-dielectric actuation. Microsyst. Technol. 2010, 16, 449–460. [Google Scholar] [CrossRef]
- Facchetti, A.; Yoon, M.H.; Marks, T.J. Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Adv. Mater. 2005, 17, 1705–1725. [Google Scholar] [CrossRef]
- Manjeet, D.; Jason, H.; Wim, W.; Stein, K. Electrowetting without Electrolysis on Self-Healing Dielectrics. Langmuir 2011, 27, 5665–5670. [Google Scholar]
- David, C.; Gareth, D.R.; Eugen, B.; Thomas, G.N.; John, T. Fluoropolymers as low-surface-energy tooth coatings for oral care. Int. J. Pharm. 2008, 352, 44–49. [Google Scholar]
- Jeanmistral, C.; Sylvestre, A.; Basrour, S. Dielectric properties of polyacrylate thick films used in sensors and actuators. Smart Mater. Struct. 2010, 19, 075019. [Google Scholar] [CrossRef]
- Linemann, R.F.; Malner, T.E.; Brandsch, R.; Bar, G.; Ritter, W.; Mulhaupt, R. Latex Blends of Fluorinated and Fluorine-Free Acrylates: Emulsion Polymerization and Tapping Mode Atomic Force Microscopy of Film Formation. Macromolecules 1999, 32, 1715–1721. [Google Scholar] [CrossRef]
- Dreher, W.R.; Singh, A.; Urban, M.W. Effect of Perfluoroalkyl Chain Length on Synthesis and Film Formation of Fluorine-Containing Colloidal Dispersions. Macromolecules 2005, 38, 4666–4672. [Google Scholar] [CrossRef]
- Misra, A.; Urban, M.W. Environmentally Compliant Fluoro-Containing MMA/nBA Colloidal Dispersions; Synthesis, Molecular Modeling, and Coalescence. Macromolecules 2009, 42, 7828–7835. [Google Scholar] [CrossRef]
- Matsukuma, D.; Watanabe, H.; Yamaguchi, H.; Takahara, A. Preparation of Low-Surface-Energy Poly[2-(perfluorooctyl)ethyl acrylate] Microparticles and Its Application to Liquid Marble Formation. Langmuir 2011, 27, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Ding, W.; Feng, Y.; Shui, L.; Wang, Y.; Li, H.; Li, N.; Zhou, G. Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion. Polymers 2017, 9, 217. https://doi.org/10.3390/polym9060217
Hou J, Ding W, Feng Y, Shui L, Wang Y, Li H, Li N, Zhou G. Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion. Polymers. 2017; 9(6):217. https://doi.org/10.3390/polym9060217
Chicago/Turabian StyleHou, Jiaxin, Wenwen Ding, Yancong Feng, Lingling Shui, Yao Wang, Hao Li, Nan Li, and Guofu Zhou. 2017. "Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion" Polymers 9, no. 6: 217. https://doi.org/10.3390/polym9060217
APA StyleHou, J., Ding, W., Feng, Y., Shui, L., Wang, Y., Li, H., Li, N., & Zhou, G. (2017). Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion. Polymers, 9(6), 217. https://doi.org/10.3390/polym9060217