Cytological Pattern Reveals Genome Downsizing in Cynodon dactylon (L.) Pers along the Longitudinal Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials Collection
2.2. Flow Cytometry Analysis
2.3. Root Fixation and Chromosome Preparation
2.4. Data Analysis
3. Results
3.1. Genome Size of Bermudagrass along Longitude Gradient
3.2. Ploidy Level of Bermudagrass in Different Sites
3.3. Relationship between Ploidy and Genome Size
4. Discussion
4.1. Genome Size Variation of Bermudagrass along the Longitudinal Gradient
4.2. Polyploidy of Bermudagrass along a Longitudinal Gradient
4.3. The Relationship between Genome Size and Ploidy Level in Bermudagrass along the Longitudinal Gradient
4.4. Aneuploidy of Bermudagrass Is Ubiquitous
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soreng, R.J.; Peterson, P.M.; Zuloaga, F.O.; Romaschenko, K.; Clark, L.G.; Teisher, J.K.; Gillespie, L.J.; Barberá, P.; Welker, C.A.; Kellogg, E.A.; et al. worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. J. Syst. Evol. 2022, 60, 476–521. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, S.; Liu, J.; Zhao, Y.; Liu, J. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PLoS ONE 2017, 12, e0177508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taliaferro, C.M.; Rouquette, F.M.; Mislevy, P. Bermudagrass and stargrass. In Warm-Season (C4) Grasses; Moser, L.E., Burson, B.L., Sollenberger, L.E., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2004; pp. 417–475. [Google Scholar]
- Harlan, J.R.; De Wet, J.M.J. Sources of variation in Cynodon dactylon (L). Pers. 1. Crop Sci. 1969, 9, 774–778. [Google Scholar] [CrossRef]
- Baxter, L.L.; Anderson, W.F.; Gates, R.N.; Rios, E.F.; Hancock, D.W. Moving warm-season forage bermudagrass (Cynodon spp.) into temperate regions of North America. Grass Forage Sci. 2022, 77, 141–150. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Taliaferro, C.M.; Martin, D.L.; Anderson, J.A.; Anderson, M.P. Genetic variability and relationships for adaptive, morphological, and biomass traits in Chinese bermudagrass accessions. Crop Sci. 2007, 47, 1985–1994. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Liu, G.; Bai, C.; Wang, W. Genetic analysis of 430 Chinese Cynodon dactylon accessions using sequence-related amplified polymorphism markers. Int. J. Mol. Sci. 2014, 15, 19134–19146. [Google Scholar] [CrossRef] [Green Version]
- Taliaferro, C.M. Diversity and vulnerability of bermuda turfgrass species. Crop Sci. 1995, 35, 327–332. [Google Scholar] [CrossRef]
- Yu, S.; Dong, H.; Fang, T.; Wu, Y. Comparative analysis reveals chromosome number reductions in the evolution of African bermudagrass (Cynodon transvaalensis Burtt-Davy). Genome 2022, 65, 341–348. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Guo, Z.; Guan, Y.; Guo, Y.; Yan, X. Variation in ploidy level and genome size of Cynodon dactylon (L.) Pers. Along A Latitudinal Gradient. Folia Geobot. 2019, 54, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Temsch, E.M.; Koutecký, P.; Urfus, T.; Šmarda, P.; Doležel, J. Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytom. Part A 2022, 101, 710–724. [Google Scholar] [CrossRef]
- Galbraith, D.W. Flow cytometric analysis of plant genomes. Method Cell Biol. 1990, 33, 549–562. [Google Scholar]
- Heller, F.O. DNA measurement of Vicia faba L. with the pulse cytophotometry. Berichte Dtsch. Bot. Ges. 1973, 86, 437–441. [Google Scholar] [CrossRef]
- Loureiro, J.; Rodriguez, E.; Dolezel, J.; Santos, C. Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann. Bot. 2006, 98, 679–689. [Google Scholar] [PubMed] [Green Version]
- Carović-Stanko, K.; Liber, Z.; Besendorfer, V.; Javornik, B.; Bohanec, B.; Kolak, I.; Satovic, Z. Genetic relations among basil taxa (Ocimum L.) based on molecular markers, nuclear DNA content, and chromosome number. Plant Syst. Evol. 2010, 285, 13–22. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Taliaferro, C.M.; Bai, G.H.; Martin, D.L.; Anderson, J.A.; Anderson, M.P.; Edwards, R.M. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 2006, 46, 917–926. [Google Scholar] [CrossRef] [Green Version]
- Sakhanokho, H.F.; Islam-Faridi, M.N.; Rajasekaran, K.; Pounders, C.T. Diversity in nuclear DNA content and ploidy level of Hedychium species and hybrids. J. Crop Improv. 2018, 32, 431–439. [Google Scholar] [CrossRef]
- Taliaferro, C.M.; Hopkins, A.A.; Henthorn, J.C.; Murphy, C.D.; Edwards, R.M. Use of flow cytometry to estimate ploidy level in Cynodon species. Int. Turfgrass Soc. Res. J. 1997, 8, 385–392. [Google Scholar]
- Zhang, R.; Liu, T.; Zhang, J.L.; Sun, Q.M. Spatial and environmental determinants of plant species diversity in a temperate desert. J. Plant Ecol. 2016, 9, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Bartha, L.; Sramkó, G.; Volkova, P.A.; Surina, B.; Ivanov, A.L.; Banciu, H.L. Patterns of plastid DNA differentiation in Erythronium (Liliaceae) are consistent with allopatric lineage divergence in Europe across longitude and latitude. Plant Syst. Evol. 2015, 301, 1747–1758. [Google Scholar]
- Eilam, T.; Anikster, Y.; Millet, E.; Manisterski, J.; Feldman, M. Genome size in diploids, allopolyploids, and autopolyploids of mediterranean triticeae. J. Bot. 2010, 2010, 34138. [Google Scholar]
- Leitch, I.J.; Bennett, M.D. Genome downsizing in polyploid plants. Biol. J. Linn. Soc. 2004, 82, 651–663. [Google Scholar]
- Lidia, P.; Florencia, R.M.; Florencia, F.M.; María, G.A.; Esther, G.G. Genome downsizing and karyotype constancy in diploid and polyploid congeners: A model of genome size variation. AoB PLANTS 2014, 6, plu029. [Google Scholar]
- Walbot, V.; Cullis, C.A. Rapid genomic change in higher plants. Annu. Rev. Plant Biol. 1985, 36, 367–396. [Google Scholar]
- Grandbastien, M.-A. Activation of plant retrotransposons under stress conditions. Trends Plant Science. 1998, 3, 181–187. [Google Scholar]
- Ozkan, H.; Levy, A.A.; Feldman, M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops–Triticum) group. Plant Cell 2001, 13, 1735–1747. [Google Scholar]
- Shaked, H.; Kashkush, K.; Ozkan, H.; Feldman, M.; Levy, A.A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 2001, 13, 1749–1759. [Google Scholar]
- Gustafson, J.P.; Bennett, M.D. The effect of telomericheterochromatin from Secale cereale on Triticale (× Triticosecale). I. The influence of the loss of several blocks of telo-meric heterochromatin on early endosperm development and kernel characteristics at maturity. Can. J. Genet. Cytol. 1982, 24, 83–92. [Google Scholar]
- Ozkan, H.; Tuna, M.; Arumuganathan, K. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops–Triticum) group). J. Hered. 2003, 94, 260–264. [Google Scholar]
- Bennett, M.D.; Smith, J.B. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 274, 227–274. [Google Scholar] [PubMed]
- Dolezel, J. Nuclear DNA content and genome size of trout and human. Cytom. Part A 2003, 51, 127–128.33. [Google Scholar]
- Knight, C.A.; Ackerly, D.D. Variation in nuclear DNA content across environmental gradients: A quantile regression analysis. Ecol. Lett. 2002, 5, 66–76. [Google Scholar]
- Akbudak, M.A.; Şakiroğlu, M.; Tuna, M. Estimation of nuclear DNA content and determination of relationship between altitude and genome size of USDA Turkish oat (Avena spp.) collection. Gesunde Pflanz. 2018, 70, 171–178. [Google Scholar]
- Carta, A.; Peruzzi, L. Testing the large genome constraint hypothesis: Plant traits, habitat and climate seasonality in L iliaceae. New Phytol. 2016, 210, 709–716. [Google Scholar] [PubMed] [Green Version]
- Bottini, M.C.J.; Greizerstein, E.J.; Aulicino, M.B.; Poggio, L. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Ann. Bot. 2000, 86, 565–573. [Google Scholar]
- Bogunic, F.; Muratovic, E.; Ballian, D.; Siljak-Yakovlev, S.; Brown, S. Genome size stability among five subspecies of Pinus nigra Arnold sl. Environ. Exp. Bot. 2007, 59, 354–360. [Google Scholar]
- Basak, S.; Sun, X.; Wang, G.; Yang, Y. Genome size unaffected by variation in morphological traits, temperature, and precipitation in turnip. Appl. Sci. 2019, 9, 253. [Google Scholar]
- Knight, C.A.; Molinari, N.A.; Petrov, D.A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 2005, 95, 177–190. [Google Scholar]
- Grime, J.P.; Mowforth, M.A. Variation in genome size—An ecological interpretation. Nature 1982, 299, 151–153. [Google Scholar]
- Grime, J.P.; Shacklock, J.M.L.; Band, S.R. Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytol. 1985, 100, 435–445. [Google Scholar]
- Šmarda, P.; Bureš, P. Understanding intraspecific variation in genome size in plants. Preslia 2010, 82, 41–61. [Google Scholar]
- Leitch, I.J.; Bennett, M.D. Polyploidy in angiosperms. Trends Plant Sci. 1997, 2, 470–476. [Google Scholar]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [PubMed]
- Wendel, J.F. Genome evolution in polyploids. Plant Mol. Evol. 2000, 42, 225–249.50. [Google Scholar]
- Doyle, J.J.; Flagel, L.E.; Paterson, A.H.; Rapp, R.A.; Soltis, D.E.; Soltis, P.S.; Wendel, J.F. Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 2008, 42, 443–461. [Google Scholar] [PubMed] [Green Version]
- Dhawan, O.P.; Lavania, U.C. Enhancing the productivity of secondary metabolites via induced polyploidy: A review. Euphytica 1996, 87, 81–89. [Google Scholar]
- Ramsey, J.; Schemske, D.W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 2002, 33, 589–639. [Google Scholar]
- Parisod, C.; Holderegger, R.; Brochmann, C. Evolutionary consequences of autopolyploidy. New Phytol. 2010, 186, 5–17. [Google Scholar]
- Soltis, P.S.; Soltis, D.E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 2009, 60, 561–588. [Google Scholar]
- Te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubešová, M.; Pyšek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar]
- Huff, D.R.; Quinn, J.A.; Higgins, B.; Palazzo, A.J. Random amplified polymorphic DNA (RAPD) variation among native little bluestem [Schizachyrium scoparium (Michx.) Nash] populations from sites of high and low fertility in forest and grassland biomes. Mol. Ecol. 1998, 7, 1591–1597. [Google Scholar]
- Gulsen, O.; Shearman, R.C.; Vogel, K.P.; Lee, D.J.; Baenziger, P.S.; Heng-Moss, T.M.; Budak, H. Nuclear genome diversity and relationships among naturally occurring buffalograss genotypes determined by sequence-related amplified polymorphism markers. HortScience 2005, 40, 537–541. [Google Scholar]
- Rice, A.; Šmarda, P.; Novosolov, M.; Drori, M.; Glick, L.; Sabath, N.; Meiri, S.; Belmaker, J.; Mayrose, I. The global biogeography of polyploid plants. Nat. Ecol. Evol. 2019, 3, 265–273. [Google Scholar] [PubMed]
- Bertin, N. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 2005, 95, 439–447. [Google Scholar] [PubMed] [Green Version]
- Kudo, N.; Kimura, Y. Cell and Molecular Biology, Biochemistry and Molecular Physiology. Nuclear DNA endoreduplication during petal development in cabbage: Relationship between ploidy levels and cell size. J. Exp. Bot. 2002, 53, 1017–1023. [Google Scholar]
- Ehrendorfer, F.; Lewis, W.H. Polyploidy: Biological relevance. In Polyploidy and Distribution; Springer: Berlin/Heidelberg, Germany, 1980; pp. 45–60. [Google Scholar]
- Maceira, N.O.; Jacquard, P.; Lumaret, R. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol. 1993, 124, 321–328. [Google Scholar]
- Petit, C.; Bretagnolle, F.; Felber, F. Evolutionary consequences of diploid–polyploid hybrid zones in wild species. Trends Ecol. Evol. 1999, 14, 306–311. [Google Scholar]
- Bureš, P.; Wang, Y.F.; Horová, L.; Suda, J. Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Ann. Bot. 2004, 94, 353–363. [Google Scholar]
- Rosato, M.; Chiavarino, A.M.; Naranjo, C.A.; Hernandez, J.C.; Poggio, L. Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). Am. J. Bot. 1998, 85, 168–174. [Google Scholar]
- Vitte, C.; Bennetzen, J.L. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. USA 2006, 103, 17638–17643. [Google Scholar]
- Yoong Lim, K.; Kovarik, A.; Matyasek, R.; Chase, M.W.; Knapp, S.; McCarthy, E.; Clarkson, J.J.; Leitch, A.R. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J. 2006, 48, 907–919. [Google Scholar]
- Bennetzen, J.L. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 2002, 115, 29–36. [Google Scholar] [PubMed]
- Vicient, C.M.; Suoniemi, A.; Anamthawat-Jonsson, K.; Tanskanen, J.; Beharav, A.; Nevo, E.; Schulman, A.H. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 1999, 11, 1769–1784. [Google Scholar] [PubMed] [Green Version]
- Shirasu, K.; Schulman, A.H.; Lahaye, T.; Schulze-Lefert, P. A contiguous 66-kb barley DNA sequence provides evidence for r eversible genome expansion. Genome Res. 2000, 10, 908–915. [Google Scholar]
- Devos, K.M.; Brown, J.K.M.; Bennetzen, J.L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002, 12, 1075–1079. [Google Scholar] [PubMed] [Green Version]
- Simonin, K.A.; Roddy, A.B. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 2018, 16, e2003706. [Google Scholar]
- Roddy, A.B.; Theroux-Rancourt, G.; Abbo, T.; Benedetti, J.W.; Brodersen, C.R.; Castro, M.; Castro, S.; Gilbride, A.B.; Jensen, B.; Jiang, G.-F.; et al. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. Int. J. Plant Sci. 2019, 181, 75–87. [Google Scholar]
- Wang, X.; Morton, J.; Pellicer, J.; Leitch, I.J.; Leitch, A.R. Genome downsizing after polyploidy: Mechanisms, rates and selection pressures. Plant J. 2021, 107, 1003–1015. [Google Scholar]
- Hao, G.Y.; Lucero, M.E.; Sanderson, S.C.; Zacharias, E.H.; Holbrook, N.M. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytol. 2013, 197, 970–978. [Google Scholar] [CrossRef]
- Silva, D.M.; Santos, Y.D.; Benites, F.R.G.; Techio, V.H. Microsporogenesis, viability and morphology of pollen grain in accessions of Cynodon L. C. Rich. (Poaceae). S. Afr. J. Bot. 2018, 118, 260–267. [Google Scholar]
- Grivet, L.; Arruda, P. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol. 2002, 5, 122–127. [Google Scholar]
- Costich, D.E.; Friebe, B.; Sheehan, M.J.; Casler, M.D.; Buckler, E.S. Genome-size variation in switchgrass (Panicum virgatum): Flow cytometry and cytology reveal rampant aneuploidy. Plant Genome 2010, 3. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ma, L.; Yang, F.; Fei, S.Z.; Li, L. 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS ONE. 2008, 3, e2167. [Google Scholar]
- Birchler, J.A. Reflections on studies of gene expression in aneuploids. Biochem. J. 2010, 426, 119–123. [Google Scholar] [PubMed]
- Li, Z.Y.; Ge, X.H. Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: A review. Plant Cell Rep. 2007, 26, 701–710. [Google Scholar]
- Henry, I.M.; Dilkes, B.P.; Young, K.; Watson, B.; Wu, H.; Comai, L. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 2005, 170, 1979–1988. [Google Scholar] [PubMed] [Green Version]
- Henry, I.M.; Dilkes, B.P.; Comai, L. Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet. 2007, 3, e70. [Google Scholar]
- Cuadrado, A.; Acevedo, R.; de la Espina, S.M.D.; Jouve, N.; De La Torre, C. Genome remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J. Exp. Bot. 2004, 55, 847–854. [Google Scholar]
Population Codes | Regions | Longitude (E) | Latitude (N) | Elevation (m) | MAT (°C) | MAR (mm) |
---|---|---|---|---|---|---|
A | Lianyungang | 119°27′06″ | 34°46′09″ | 50 | 10.6 | 883.9 |
B | Tancheng | 118°16′08″ | 34°38′37″ | 30 | 9.5 | 832.9 |
C | Zaozhuang | 117°49′20″ | 34°38′48″ | 89 | 10 | 820.3 |
D | Shanxian | 116°09′11″ | 34°46′31″ | 30 | 9.8 | 621.4 |
E | Lankao | 114°44′55″ | 34°49′32″ | 60 | 9.7 | 631.1 |
F | Zhengzhou | 113°38′20″ | 34°54′04″ | 90 | 9.9 | 640.8 |
G | Luoyang | 112°19′30″ | 34°43′20″ | 210 | 9.5 | 673.2 |
H | Sanmenxia | 111°03′49″ | 34°42′29″ | 340 | 9.4 | 558.1 |
I | Tongguan | 110°13′18″ | 34°33′41″ | 540 | 8.8 | 602.9 |
J | Jingyang | 108°50′07″ | 34°32′32″ | 410 | 13.5 | 504.1 |
K | Fufeng | 107°52′41″ | 34°20′35″ | 570 | 8 | 569.9 |
L | Baoji | 107°41′03″ | 34°21′54″ | 630 | 9.5 | 645.9 |
M | Tianshui | 105°57′34″ | 34°32′43″ | 1050 | 6.9 | 500.7 |
Population Codes | Longitude (E) | Number of Individuals | 1 Cx Mean [pg] | Genome Size (Mbp) |
---|---|---|---|---|
A | 119°27′06″ | 16 | 1.41 ± 0.20 | 1378.98 |
B | 118°16′08″ | 19 | 1.65 ± 0.22 | 1613.70 |
C | 117°49′20″ | 16 | 1.27 ± 0.19 | 1242.06 |
D | 116°09′11″ | 18 | 1.12 ± 0.20 | 1095.36 |
E | 114°44′55″ | 17 | 1.27 ± 0.23 | 1242.06 |
F | 113°38′20″ | 15 | 1.56 ± 0.20 | 1525.68 |
G | 112°19′30″ | 19 | 1.17 ± 0.12 | 1144.26 |
H | 111°03′49″ | 17 | 1.33 ± 0.20 | 1300.74 |
I | 110°13′18″ | 19 | 1.06 ± 0.07 | 1036.68 |
J | 108°50′07″ | 18 | 1.43 ± 0.32 | 1398.54 |
K | 107°52′41″ | 19 | 1.29 ± 0.22 | 1261.62 |
L | 107°41′03″ | 19 | 1.17 ± 0.23 | 1144.26 |
M | 105°57′34″ | 15 | 1.39 ± 0.25 | 1359.42 |
Total | - | 227 | 1.31 ± 0.26 | 1281.18 |
Codes | Diploid (2n = 18) | Triploid (2n = 27) | Tetraploid (2n = 36) | Pentaploid (2n = 45) | Hexaploid (2n = 54) | Aneuploid |
---|---|---|---|---|---|---|
A | 11.11 | 5.56 | 22.22 | 50.00 | 11.11 | - |
B | 5 | - | 20.00 | 25.00 | 45.00 | 5.00 |
C | - | - | 70.59 | 5.88 | 5.88 | 17.65 |
D | 11.11 | 5.56 | 50.00 | 22.22 | 5.56 | 5.56 |
E | - | 5.00 | 45.00 | 20.00 | 15.00 | 15.00 |
F | 11.76 | 5.88 | 29.41 | 17.65 | 29.41 | 5.88 |
G | - | 5.00 | 60.00 | 10.00 | - | 25.00 |
H | - | 6.67 | 20.00 | 33.33 | 33.33 | 6.67 |
I | 10.00 | 15.00 | 65.00 | - | 5.00 | 5.00 |
J | - | - | 40.00 | 5.00 | 40.00 | 15.00 |
K | 10.00 | 15.00 | 40.00 | 20.00 | 10.00 | 5.00 |
L | - | - | 78.95 | 15.79 | 5.26 | - |
M | 6.25 | 6.25 | 25.00 | 31.25 | 18.75 | 12.50 |
Mean | 5.00 | 5.40 | 45.00 | 18.30 | 17.10 | 9.20 |
Ploidy Level | 1 Cx Mean [pg] | SD | Range of Genome Size |
---|---|---|---|
Diploid | 1.32 | 0.27 | 0.95–1.62 |
Triploid | 1.21 | 0.22 | 0.91–1.68 |
Tetraploid | 1.19 | 0.21 | 0.94–1.80 |
Pentaploid | 1.45 | 0.23 | 1.03–1.97 |
Hexaploid | 1.51 | 0.23 | 1.00–2.00 |
Aneuploid | 1.33 | 0.28 | 0.99–2.03 |
Source of Variation | Sum of Squares | Df | F | p-Value | |
---|---|---|---|---|---|
Genome size | Among populations | 6.236 | 12 | 11.858 | <0.001 |
Within populations | 9.379 | 214 | |||
Total | 15.615 | 226 | |||
Ploidy level | Among populations | 61.338 | 12 | 2.162 | <0.05 |
Within populations | 506.028 | 214 | |||
Total | 567.336 | 226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, M.; Zhang, J.; Feng, G.; Noor, M.; Guo, Z.; Guo, Y.; Guan, Y.; Yan, X. Cytological Pattern Reveals Genome Downsizing in Cynodon dactylon (L.) Pers along the Longitudinal Gradient. Agronomy 2023, 13, 1984. https://doi.org/10.3390/agronomy13081984
Li M, Wang M, Zhang J, Feng G, Noor M, Guo Z, Guo Y, Guan Y, Yan X. Cytological Pattern Reveals Genome Downsizing in Cynodon dactylon (L.) Pers along the Longitudinal Gradient. Agronomy. 2023; 13(8):1984. https://doi.org/10.3390/agronomy13081984
Chicago/Turabian StyleLi, Manqing, Miaoli Wang, Jingxue Zhang, Guilan Feng, Maryam Noor, Zhipeng Guo, Yuxia Guo, Yongzhuo Guan, and Xuebing Yan. 2023. "Cytological Pattern Reveals Genome Downsizing in Cynodon dactylon (L.) Pers along the Longitudinal Gradient" Agronomy 13, no. 8: 1984. https://doi.org/10.3390/agronomy13081984