Optimizing Wheat Pollen Preservation for Enhanced Viability and In Vitro Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pollen Collection and Storage
2.2. Pollen Viability
2.3. In Vitro Pollen Germination Test
2.4. Grain Number per Spike (GpS)
2.5. Statisticall Analysis
3. Results
3.1. Assessment of Pollen Viability and Germination across Genotypes
3.2. Influence of Pollen Viability on Mean Number of Grains Per Spike
3.3. Influence of Storage Duration and Temperature on Pollen Viability and Germination
3.4. Correlation of Pollen Viability and Germination with Storage Duration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Wu, J.; Sajjad, M. Pollen viability-based heat susceptibility index (HSIpv): A useful selection criterion for heat-tolerant genotypes in wheat. Front. Plant Sci. 2022, 13, 1064569. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S. Control of male gametophyte development. Plant Cell 2004, 16, S142–S153. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.E.; Lukaszewski, A.J. Pollen longevity in wheat, rye and triticale. Plant Breed. 1989, 102, 31–34. [Google Scholar] [CrossRef]
- He, W.; Xiao, Q.; Pu, G.; Huang, X.; Li, Y.; Shi, L. Effect of walnut pollen on ‘Shuangzao’ fruit quality and early fruit of several. J. Hunan Agri. Univ. 2017, 43, 266–269. [Google Scholar]
- Dafni, A.; Firmage, D. Pollen viability and longevity: Practical, ecological and evolutionary implications. Plant Syst. Evol. 2000, 222, 113–132. [Google Scholar] [CrossRef]
- Machado, C.A.; Moura, C.R.F.; Lemos, E.E.P.; Ramos, S.R.R.; Ribeiro, F.E.; Lédo, A.S. Pollen grain viability of coconut accessions at low temperatures. Acta Sci. Agron. 2014, 36, 227–232. [Google Scholar] [CrossRef]
- Zambon, C.R.; Silva, L.F.O.; Pio, R.; Figueiredo, M.A.; Silva, K.N. Estabelecimento de meio de cultura e quantificação da germinação de grãos de pólen de cultivares de marmeleiros. Rev. Bras. Frutic. 2014, 36, 400–407. [Google Scholar] [CrossRef]
- Impe, D.; Reitz, J.; Köpnick, C.; Rolletschek, H.; Börner, A.; Senula, A.; Nagel, M. Assessment of pollen viability for wheat. Front. Plant Sci. 2020, 10, 1588. [Google Scholar] [CrossRef]
- Sedgley, M.; Harbard, J.; Smith, R.M.; Wickneswari, R. Development of hybridization techniques for Acacia mangium and Acacia auriculiformis. In Breeding Technologies for Tropical Acacias; Carron, L.T., Aken, K.M., Eds.; Proceedings No. 37; Australian Centre for International Agricultural Research: Canberra, Australia, 1992; pp. 63–69. [Google Scholar]
- Liu, X.; Xiao, Y.; Zi, J.; Yan, J.; Li, C.; Du, C.; Wan, J.; Wu, H.; Zheng, B.; Wang, S.; et al. Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Sci. Rep. 2023, 13, 611. [Google Scholar] [CrossRef]
- Patel, R.G.; Mankad, A.U. In vitro pollen germination-A review. Int. J. Sci. Res. 2014, 3, 304–307. [Google Scholar]
- Koubouris, G.C.; Metzidakis, I.T.; Vasilakakis, M.D. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Bot. 2009, 67, 209–214. [Google Scholar] [CrossRef]
- Deng, Z.; Harbaugh, B. Technique for in vitro pollen germination and short term pollen storage in caladium. Hortscience 2004, 39, 365–367. [Google Scholar] [CrossRef]
- Sauve, R.; Craddock, J.; Reed, S.; Schlarbaum, S. Storage of flowering dogwood (Cornus florida L.) pollen. Hort. Sci. 2000, 35, 108–109. [Google Scholar]
- Jia, H.; Liang, X.; Zhang, L.; Zhang, J.; Sapey, E.; Liu, X.; Sun, Y.; Sun, S.; Yan, H.; Lu, W.; et al. Improving ultra-low temperature preservation technologies of soybean pollen for off-season and off-site hybridization. Front. Plant Sci. 2022, 13, 920522. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Sarkar, S.; Rao, G.N. Improvised media for in vitro pollen germination of some species of Apocynaceae. Int. J. Environ. 2014, 3, 146–153. [Google Scholar] [CrossRef]
- Yuan, S.C.; Chin, S.W.; Lee, C.Y.; Chen, F.C. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot. Stud. 2018, 59, 6. [Google Scholar] [CrossRef]
- Chagas, E.A.; Pio, R.; Chagas, P.C.; Pasqual, M.; Bettiol Neto, J.E. Composição de meio de cultura e condições ambientais para germinação de grãos de pólen de porta-enxertos de pereira. Ciênc. Rural 2010, 40, 231–236. [Google Scholar] [CrossRef]
- Shokat, S.; Großkinsky, D.K.; Singh, S.; Liu, F. The role of genetic diversity and pre-breeding traits to improve drought and heat tolerance of bread wheat at the reproductive stage. Food Energy Secur. 2023, 12, e478. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, F.J.; Chen, F.D.; Fang, W.M.; Teng, N.J. Identification of Chrysanthemum (Chrysanthemum morifolium) Self-Incompatibility. Sci. World J. 2014, 2014, 625658. [Google Scholar] [CrossRef]
- Saini, H.S.; Aspinall, D. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann. Bot. 1982, 49, 835–846. Available online: http://www.jstor.org/stable/42756806 (accessed on 5 December 2023). [CrossRef]
- Saini, H.S.; Sedgley, M.; Aspinall, D. Effect of high temperature stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust. J. Plant Physiol. 1983, 10, 137–144. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Sheehy, J.E.; Thomas, J.M.G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Masthigowda, H.M.; Sharma, D.; Khobra, R.; Krishnappa, G.; Khan, H.; Singh, S.K.; Chaves, M.; Singh, G.P. Pollen viability as a potential trait for screening heat-tolerant wheat (Triticum aestivum L.). Funct. Plant Biol. 2022, 49, 625–633. [Google Scholar] [CrossRef]
- Baninasab, B.; Tabori, M.; Yu, J.; Zhang, Y.; Wang, X.; Deschiffart, I.; Khanizadeh, S. Low temperature storage and in-vitro pollen germination of selected spring wheat accessions. J. Agric. Sci. 2017, 9, 1–6. [Google Scholar] [CrossRef]
- Mukti, G. Pollen storage and viability. Int. J. Bot. Res. 2014, 4, 1–18. [Google Scholar]
- Fei, S.; Nelson, E. Estimation of pollen viability, shedding pattern, and longevity of creeping bent grass on artificial media. Crop Sci. 2003, 43, 2177–2181. [Google Scholar] [CrossRef]
- Luna, V.S.; Figueroa, M.J.; Baltazar, M.B.; Gomez, L.R.; Townsend, R.; Schoper, J.B. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 2001, 41, 1551–1557. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Campbell, C.G. In vitro germination and viability of buckwheat (Fagopyrum esculentum Moench) pollen. Euphytica 1998, 102, 87–92. [Google Scholar] [CrossRef]
- Yoshiji, N.; Shiokawa, Y. A study on the storage of Lilium pollen. J. Jpn. Soc. Hortic. Sci. 1992, 61, 399–403. [Google Scholar] [CrossRef]
- Mert, C. Temperature responses of pollen germination in walnut (Juglans regia L.). J. Biol. Eviron. Sci. 2009, 3, 37–43. [Google Scholar]
- Jayaprakash, P.; Annapoorani, S.; Vikas, V.K.; Sivasamy, M.; Kumar, J.; Saravannan, K.; Sheeba, D. An improved in vitro germination medium for recalcitrant Bread wheat (Triticum aestivum L.) pollen. Indian J. Genet. Plant Breed. 2015, 75, 446–452. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Griffin, W.B. Outcrossing in New Zealand wheats measured by occurrence of purple grain. N. Z. J. Agric. Res. 2012, 30, 287–290. [Google Scholar] [CrossRef]
- Shivanna, K.R.; Tandon, R. Reproductive Ecology of Flowering Plants: A Manual; Springer: New Delhi, India, 2014. [Google Scholar]
- Gaaliche, B.; Majdoub, A.; Trad, M.; Mars, M. Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agron. 2013, 50, e207434. [Google Scholar]
- Fernando, D.D.; Lazzaro, M.D.; Owens, J.N. Growth and development of conifer pollen tubes. Sex. Plant Repro. 2005, 18, 149–162. [Google Scholar] [CrossRef]
- Hosoo, Y.; Yoshii, E.; Negishi, K.; Taira, H. A histological comparison of the development of pollen and female gametophytes in fertile and sterile Cryptomeria japonica. Sex. Plant Repro. 2005, 18, 81–89. [Google Scholar] [CrossRef]
- Kormutak, A.; Vooková, B.; Čamek, V.; Salaj, T.; Galgóci, M.; Maňka, P.; Boleček, P.; Kuna, R.; Kobliha, J.; Lukáčik, I.; et al. Artificial hybridization of some Abies species. Plant Sys. Evol. 2013, 299, 1175–1184. [Google Scholar] [CrossRef]
- De Souza, E.H.; Souza, F.V.D.; Rossi, M.L.; Brancalleao, N.; da Silva Ledo, C.A.; Martinelli, A.P. Viability, storage and ultrastructure analysis of Aechmea bicolor (Bromeliaceae) pollen grains, an endemic species to the Atlantic forest. Euphytica 2015, 204, 13–28. [Google Scholar] [CrossRef]
- Du, K.; Shen, B.; Xu, L. Changes of viability of stored poplar pollens and its feasibility for cross breeding. J.-Huazhong Agric. Univ. 2007, 26, 385. [Google Scholar]
- Fernando, D.D.; Richards, J.L.; Kikkert, J.R. In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen. Plant Cell Rep. 2006, 25, 450–456. [Google Scholar] [CrossRef]
- Naik, S.; Rana, P.; Rana, V. Pollen storage and use for enhancing fruit production in kiwifruit (Actinidia deliciosa A. Chev.). J. Appl. Hortic. 2013, 15, 128–132. [Google Scholar] [CrossRef]
- Parzies, H.K.; Schnaithmann, F.; Geiger, H.H. Pollen viability of Hordeum spp. genotypes with different flowering characteristics. Euphytica 2005, 145, 229–235. [Google Scholar] [CrossRef]
- Tuinstra, M.R.; Wedel, J. Estimation of pollen viability in grain sorghum. Crop Sci. 2000, 40, 968–970. [Google Scholar] [CrossRef]
- Lora, J.; De Oteyza, M.P.; Fuentetaja, P.; Hormaza, J.I. Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill.) pollen. Sci. Hortic. 2006, 108, 91–94. [Google Scholar] [CrossRef]
- Akond, A.M.; Pounders, C.T.; Blythe, E.K.; Wang, X. Longevity of crapemyrtle pollen stored at different temperatures. Sci. Hortic. 2012, 139, 53–57. [Google Scholar] [CrossRef]
- Dutta, S.K.; Srivastav, M.; Chaudhary, R.; Lal, K.; Patil, P.; Singh, S.K.; Singh, A.K. Low temperature storage of mango (Mangifera indica L.) pollen. Sci. Hortic. 2013, 161, 193–197. [Google Scholar] [CrossRef]
- Novara, C.; Scari, L.; Morgia, V.; Reale, L.; Genre, A.; Siniscalco, C. Viability and germinability in long term storage of Corylus avellana pollen. Sci. Hortic. 2017, 214, 295–303. [Google Scholar] [CrossRef]
- Alburquerque, N.; Montiel, F.; Burgos, L. Influence of storage temperature on the viability of sweet cherry pollen. Span. J. Agric. Res. 2007, 5, 86–90. [Google Scholar] [CrossRef]
- Bryhan, N.; Serdar, U. In vitro pollen germination and tube growth of some European chestnut genotypes (Castanea sativa Mill.). Fruits 2009, 64, 157–165. [Google Scholar]
- Mortazavi, S.M.H. The Effects of Different Concentration of Some Chemicals on In Vitro Pollen Grain Germination of Three Khuzestan Male Date Cultivars. Master’s Dissertation, Dept. Horticulture, Tarbiat Modares University, Tehran, Iran, 2010. [Google Scholar]
- Song, J.; Tachibana, S. Loss of viability of tomato pollen during long-term dry storage is associated with reduced capacity for translating polyamine biosynthetic enzyme genes after rehydration. J. Exp. Bot. 2007, 58, 4235–4244. [Google Scholar] [CrossRef]
- Martins, E.S.; Davide, L.M.C.; Miranda, G.J.; Barizon, J.D.O.; Souza, F.D.A.; Carvalho, R.P.D.; Gonçalves, M.C. In vitro pollen viability of maize cultivars at different times of collection. Cienc. Rural 2016, 47, e20151077. [Google Scholar] [CrossRef]
- Jumrani, K.; Bhatia, V.S.; Pandey, G.P. Screening soybean genotypes for high temperature tolerance by in vitro pollen germination, pollen tube length reproductive efficiency and seed yield. Indian J. Plant Physiol. 2018, 23, 77–90. [Google Scholar] [CrossRef]
- Akihama, T.; Omura, M.; Kozaki, I. Long-term storage of fruit tree pollen and its application in breeding. Jpn. Agric. Res. Q. 1979, 13, 238–241. [Google Scholar]
- Yin, J.L.; Zhao, H.E. Summary of influencial factors on pollen viability and its preservation methods. China Agri. Sci. Bull. 2005, 21, 110–113. [Google Scholar]
- Gandadikusumah, V.; Wawangningrum, H.; Rahayu, S. Pollen viability of Aeschyanathus tricolor Hook. J. Trop. Life Sci. 2017, 7, 53–60. [Google Scholar] [CrossRef]
- Bhat, Z.A.; Dhillon, W.S.; Shafi, R.H.S.; Rather, J.A.; Mir, A.H.; Shafi, W.; Rashid, R.; Bhat, J.A.; Rather, T.R.; Wani, T.A. Influence of storage temperature on viability and in vitro germination capacity of pear (Pyrus spp.) pollen. J. Agric. Sci. 2012, 4, 128–135. [Google Scholar] [CrossRef]
- Hechmi, M.; Mhanna, K.; Feleh, E. In vitro pollen germination of four olive cultivars (Olea europaea L.): Effect of boric acid and storage. Am. J. Plant Physio. 2015, 10, 55–67. [Google Scholar] [CrossRef]
- Cheng, C.; Mcomb, J.A. In vitro germination of wheat pollen on raffinose medium. New Phytol. 1992, 120, 459–462. [Google Scholar] [CrossRef]
- Devrnja, N.; Milojević, J.; Tubić, L.; Zdravković-Korać, S.; Cingel, A.; Ćalić, D. Pollen morphology, viability, and germination of Tanacetum vulgare L. Hortscience 2012, 47, 440–442. [Google Scholar] [CrossRef]
- Mulcahy, G.B.; Mulcahy, D.L. The effect of supplemented media on the growth in vitro of bi-and tri-nucleate pollen. Plant Sci. 1988, 55, 213–216. [Google Scholar] [CrossRef]
- Xu, J.; Lowe, C.; Hernandez-Leon, S.G.; Dreisigacker, S.; Reynolds, M.P.; Valenzuela-Soto, E.M.; Paul, M.J.; Heuer, S. The effects of brief heat during early booting on reproductive, developmental, and chlorophyll physiological performance in common wheat (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 886541. [Google Scholar] [CrossRef] [PubMed]
- Al-Salimiyia, M.; De Luigi, G.; Abu-Rabada, E.; Ayad, H.; Basheer-Salimia, R. Adaption of wheat genotypes to drought stress. Int. J. Environ. Agric. Biotechnol. 2018, 3, 182–186. [Google Scholar] [CrossRef]
- Kedir, A.; Alemu, S.; Tesfaye, Y.; Asefa, K.; Teshome, G. Effect of Genotype by Environment Interaction on Bread Wheat (Triticum aestivum L.) Genotypes in Midland of Guji Zone, Southern Ethiopia. Bioprocess Eng. 2022, 6, 16–21. [Google Scholar]
- Kandić, V.; Savić, J.; Rančić, D.; Dodig, D. Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation. Agriculture 2023, 13, 673. [Google Scholar] [CrossRef]
- Sulusoglu, M.; Cavusoglu, A. In vitro pollen viability and pollen germination of service tree (Sorbus domestica L.). Int. J. Biosci. 2014, 5, 108–114. [Google Scholar]
- Abdelgadir, H.A.; Johnson, S.D.; Van Staden, J. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S. Afr. J. Bot. 2012, 79, 132–139. [Google Scholar] [CrossRef]
- Sunilkumar, K.; Mathur, R.; Sparjanbabu, D. Efficacy of dyes and media on pollen viability and germinability in oil palm (Elaeis guineensis Jacq.). Int. J. Oil Palm Res. 2011, 8, 9–12. [Google Scholar]
- Mosquera, D.J.C.; Salinas, D.G.C.; Moreno, G.A.L. Pollen viability and germination in Elaeis oleifera, Elaeis guineensis and their interspecific hybrid. Pesqui. Agropecuária Trop. 2021, 51, e68076. [Google Scholar] [CrossRef]
- Alexander, M.P. Differential staining of aborted and nonaborted pollen. Stain. Technol. 1969, 44, 117–122. [Google Scholar] [CrossRef]
- Chen, J.R.; Lai, Y.H.; Tsai, J.J.; Hsiao, C.D. Live fluorescent staining platform for drug scree ing and mechanism-analysis in zebrafish for bone mineralization. Molecules 2017, 22, 2068. [Google Scholar] [CrossRef]
- Ascari, L.; Novara, C.; Dusio, V.; Oddi, L.; Siniscalco, C. Quantitative methods in microscopy to assess pollen viability in different plant taxa. Plant Reprod. 2020, 33, 205–219. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xu, K.; Li, Y.; Gao, H.; Miao, T.; Zhao, R.; Huang, Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. Biosensors 2023, 13, 838. [Google Scholar] [CrossRef] [PubMed]
Traits | SOV | DF | Sum Sq | Mean Sq | F-Value | Pr (>F) |
---|---|---|---|---|---|---|
Pollen viability | Genotypes (G) | 49 | 7048 | 144 | 5.878 | <2 × 10−16 *** |
Storage temperature (T) | 2 | 53,909 | 26,954 | 1101.57 | <2 × 10−16 *** | |
Storage time (ST) | 3 | 752,099 | 250,700 | 10,245.6 | <2 × 10−16 *** | |
G × T | 98 | 6774 | 69 | 2.825 | <2 × 10−16 *** | |
G × ST | 147 | 14,811 | 101 | 4.99 | <2 × 10−16 *** | |
T × ST | 6 | 891 | 149 | 5.592 | 9.29 × 10−6 *** | |
In Vitro pollen germination | Genotypes (G) | 49 | 6406 | 131 | 3.411 | 6.34 × 10−14 *** |
Storage temperature (T) | 2 | 13,419 | 6710 | 175.072 | <2 × 10−16 *** | |
Storage time (ST) | 3 | 1,536,105 | 512,035 | 13,360.3 | <2 × 10−16 *** | |
G × T | 98 | 10,303 | 105 | 2.743 | 4.40 × 10−16 *** | |
G × ST | 147 | 18,398 | 125 | 3.635 | <2 × 10−16 *** | |
T × ST | 6 | 7700 | 1283 | 33.955 | <2 × 10−16 *** |
Source of Variation | Df | Sum Sq | Mean Sq | F Value | Pr(>F) |
---|---|---|---|---|---|
Genotypes | 49 | 10,027 | 204.6 | 38.61 | <2 × 10−16 *** |
Residuals | 100 | 530 | 5.3 |
Pv | GpS | ||
---|---|---|---|
Pv | Pearson’s r | — | |
df | — | ||
p-value | — | ||
GpS | Pearson’s r | 0.148 | — |
df | 48 | — | |
p-value | 0.303 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Naeem, M.K.; Shahzad, A.; Zhang, Z.; Chen, J.; Sajjad, M. Optimizing Wheat Pollen Preservation for Enhanced Viability and In Vitro Germination. Agronomy 2024, 14, 201. https://doi.org/10.3390/agronomy14010201
Khan I, Naeem MK, Shahzad A, Zhang Z, Chen J, Sajjad M. Optimizing Wheat Pollen Preservation for Enhanced Viability and In Vitro Germination. Agronomy. 2024; 14(1):201. https://doi.org/10.3390/agronomy14010201
Chicago/Turabian StyleKhan, Irum, Muhammad Kashif Naeem, Armghan Shahzad, Zijin Zhang, Jing Chen, and Muhammad Sajjad. 2024. "Optimizing Wheat Pollen Preservation for Enhanced Viability and In Vitro Germination" Agronomy 14, no. 1: 201. https://doi.org/10.3390/agronomy14010201