Closer to Nature Through Dynamic Culture Systems
Abstract
:1. Introduction
2. Chemical Aspects of Static Culture Systems
2.1. Chemically-Induced Cell Growth and Death
2.2. Role of Chemicals on Cell Differentiation and Reprogramming
3. Role of Mechanosensor in Normal Cells
4. Role of Mechanosensor in Cancer Cells
5. Mechanotransduction Signaling
5.1. Mechanotransduction Signaling in Normal Cells
5.2. Mechanotransduction Signaling in Cancer Cells
6. Role of Mechanical Stimulations on Cell Behavior
6.1. Extracellular Matrix Stiffness
6.2. Stretching
6.3. Contraction and Relaxation
6.4. Compression
6.5. Shear Stress
6.6. Tension
7. The Similarity Between Mechanical Stimulations and Forces In Vivo
7.1. Stretching and Tissue Flexibility
7.1.1. Stretching and Heart Models
7.1.2. Stretching and Vascular Model
7.1.3. Stretching and Lung Model
7.1.4. Stretching and Neuron Model
7.2. Contraction/Relaxation in Stem Cell Differentiation
7.3. Shear Stress on Vasculature Development
7.4. Bioreactor Dynamics on Tissue Development
8. Future Perspective for Mimicking In Vivo Microenvironments
Author Contributions
Funding
Conflicts of Interest
References
- Artemenko, Y.; Axiotakis, L.; Borleis, J.; Iglesias, P.A.; Devreotes, P.N. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks. Proc. Natl. Acad. Sci. USA 2016, 113, E7500–E7509. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.R.; Guo, S.; Minami, T.; Spokes, K.C.; Ueki, K.; Skurk, C. Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arter. Thromb. Vasc. Biol. 2004, 24, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Wang, L.J.; Wu, J.; Shi, Y.X.; Li, G.P.; Yang, X.Q. Src kinase inhibitor PP2 regulates the biological characteristics of A549 cells via the PI3K/Akt signaling pathway. Oncol. Lett. 2018, 16, 5059–5065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak, H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 2013, 5, a008698. [Google Scholar] [CrossRef]
- Weng, Y.; Zhu, J.; Chen, Z.; Fu, J.; Zhang, F. Fructose fuels lung adenocarcinoma through GLUT5. Cell Death Dis. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Dela Paz, N.G.; Frangos, J.A. Yoda1-induced phosphorylation of Akt and ERK1/2 does not require Piezo1 activation. Biochem. Biophys. Res. Commun. 2018, 497, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Colombo, E.; Francisconi, S.; Faravelli, L.; Izzo, E.; Pevarello, P. Ion channel blockers for the treatment of neuropathic pain. Future Med. Chem. 2010, 2, 803–842. [Google Scholar] [CrossRef] [PubMed]
- Green, B.R.; Bulaj, G.; Norton, R.S. Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Med. Chem. 2014, 6, 1677–1698. [Google Scholar] [CrossRef]
- Qiu, L.; Li, Z.; Qiao, M.; Long, M.; Wang, M.; Zhang, X. Self-assembled pH-responsive hyaluronic acid–g-poly(l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014, 10, 2024–2035. [Google Scholar] [CrossRef]
- Solis, M.A.; Chen, Y.H.; Wong, T.Y.; Bittencourt, V.Z.; Lin, Y.C.; Huang, L.L.H. Hyaluronan Regulates Cell Behavior: A Potential Niche Matrix for Stem Cells. Biochem. Res. Int. 2012, 2012, 11. [Google Scholar] [CrossRef]
- Misra, S.; Hascall, V.C.; Markwald, R.R.; Ghatak, S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015, 6, 201. [Google Scholar]
- Zöller, M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front. Immunol. 2015, 6, 235. [Google Scholar] [Green Version]
- Kim, B.S.; Lee, C.H.; Chang, G.E.; Cheong, E.; Shin, I. A potent and selective small molecule inhibitor of sirtuin 1 promotes differentiation of pluripotent P19 cells into functional neurons. Sci. Rep. 2016, 6, 34324. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Guo, R.; Shen, S.J.; Zheng, Y.; Lu, Y.T.; Jiang, M.M. Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor. Acta Pharmacol. Sin. 2019, 40, 620–629. [Google Scholar] [CrossRef]
- Kim, S.E.; Coste, B.; Chadha, A.; Cook, B.; Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 2012, 483, 209–212. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Si, G.; Huang, J.; Samuel, A.D.T.; Perrimon, N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 2018, 555, 103–106. [Google Scholar] [CrossRef]
- Upadhyay, J.; Aitken, K.J.; Damdar, C.; Bolduc, S.; Bagli, D.J. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J. Urol. 2003, 169, 750–755. [Google Scholar] [CrossRef]
- Baeyens, N.; Schwartz, M.A. Biomechanics of vascular mechanosensation and remodeling. Mol. Biol. Cell 2016, 27, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Frangos, J.A.; Chachisvilis, M. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am. J. Phys. Cell Phys. 2009, 296, C1391–C1399. [Google Scholar] [CrossRef]
- Nonomura, K.; Woo, S.H.; Chang, R.B.; Gillich, A.; Qiu, Z.; Francisco, A.G. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 2016, 541, 176. [Google Scholar] [CrossRef] [PubMed]
- Retailleau, K.; Duprat, F.; Arhatte, M.; Ranade, S.S.; Peyronnet, R.; Martins, J.R. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Rep. 2015, 13, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Y.; Juang, W.C.; Tsai, C.T.; Tseng, C.J.; Lee, W.H.; Chang, S.N. Mechanical Stretching Simulates Cardiac Physiology and Pathology through Mechanosensor Piezo1. J. Clin. Med. 2018, 7, 410. [Google Scholar] [CrossRef]
- Chin, L.; Xia, Y.; Discher, D.E.; Janmey, P.A. Mechanotransduction in cancer. Curr. Opin Chem. Eng. 2016, 11, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Weaver, V.M.; Petersen, O.W.; Wang, F.; Larabell, C.A.; Briand, P.; Damsky, C. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 1997, 137, 231–245. [Google Scholar] [CrossRef]
- Saxena, M.; Liu, S.; Yang, B.; Hajal, C.; Changede, R.; Hu, J. EGFR and HER2 activate rigidity sensing only on rigid matrices. Nat. Mater. 2017, 16, 775–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moasser, M.M. The oncogene HER2: Its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 2007, 26, 6469–6487. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ju, L.; Rushdi, M.; Ge, C.; Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 2017, 28, 3134–3155. [Google Scholar] [CrossRef] [PubMed]
- Kirby, T.J.; Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 2018, 20, 373–381. [Google Scholar] [CrossRef]
- Ohashi, K.; Fujiwara, S.; Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J. Biochem. 2017, 161, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Miroshnikova, Y.A.; Nava, M.M.; Wickstrom, S.A. Emerging roles of mechanical forces in chromatin regulation. J. Cell Sci. 2017, 130, 2243–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bun, P.; Liu, J.; Turlier, H.; Liu, Z.; Uriot, K.; Joanny, J.F. Mechanical Checkpoint for Persistent Cell Polarization in Adhesion-Naive Fibroblasts. Biophys. J. 2014, 107, 324–335. [Google Scholar] [CrossRef]
- Tang, D.D.; Gerlach, B.D. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir. Res. 2017, 18, 54. [Google Scholar] [CrossRef]
- Zakharov, P.; Gudimchuk, N.; Voevodin, V.; Tikhonravov, A.; Ataullakhanov, F.I.; Grishchuk, E.L. Molecular and Mechanical Causes of Microtubule Catastrophe and Aging. Biophys. J. 2015, 109, 2574–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enyedi, B.; Jelcic, M.; Niethammer, P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 2016, 165, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Solis, M.A.; Chen, Y.H.; Huang, L.L.H. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells. World J. Stem. Cells 2015, 7, 512–520. [Google Scholar] [CrossRef]
- Anishkin, A.; Loukin, S.H.; Teng, J.; Kung, C. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc. Natl. Acad. Sci. USA 2014, 111, 7898. [Google Scholar] [CrossRef]
- Sanderson, M.J.; Charles, A.C.; Dirksen, E.R. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1990, 1, 585–596. [Google Scholar] [CrossRef]
- Han, B.; Bai, X.H.; Lodyga, M.; Xu, J.; Yang, B.B.; Keshavjee, S. Conversion of mechanical force into biochemical signaling. J. Biol. Chem. 2004, 279, 54793–54801. [Google Scholar] [CrossRef]
- Fernandez, P.; Maier, M.; Lindauer, M.; Kuffer, C.; Storchova, Z.; Bausch, A.R. Mitotic Spindle Orients Perpendicular to the Forces Imposed by Dynamic Shear. PLoS ONE 2011, 6, 28965. [Google Scholar] [CrossRef]
- Barnes, J.M.; Przybyla, L.; Weaver, V.M. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 2017, 130, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brancaccio, M.; Hirsch, E.; Notte, A.; Selvetella, G.; Lembo, G.; Tarone, G. Integrin signalling: The tug-of-war in heart hypertrophy. Cardiovasc. Res. 2006, 70, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Dahl, K.N.; Ribeiro, A.J.S.; Lammerding, J. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 2008, 102, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, N.E.; Lancha, A.H., Jr. Mechanical stimuli of skeletal muscle: Implications on mTOR/p70s6k and protein synthesis. Eur. J. Appl. Physiol. 2008, 102, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chaudhry, I.; Reid, M.B.; Boriek, A.M. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J. Biol. Chem. 2002, 277, 46493–46503. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xiao, L.W.; Liao, E.Y.; Wang, Q.J.; Wang, B.B.; Lei, J.X. The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells. Int. J. Clin. Exp. Pathol. 2014, 7, 7451–7459. [Google Scholar] [PubMed]
- Liu, M.; Tanswell, A.K.; Post, M. Mechanical force-induced signal transduction in lung cells. Am. J. Phys. Lung Cell. Mol. Phys. 1999, 277, L667–L683. [Google Scholar] [CrossRef] [PubMed]
- Prager-Khoutorsky, M.; Lichtenstein, A.; Krishnan, R.; Rajendran, K.; Mayo, A.; Kam, Z. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 2011, 13, 1457–1465. [Google Scholar] [CrossRef]
- Yang, B.; Lieu, Z.Z.; Wolfenson, H.; Hameed, F.M.; Bershadsky, A.D.; Sheetz, M.P. Mechanosensing Controlled Directly by Tyrosine Kinases. Nano Lett. 2016, 16, 5951–5961. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi, S.; Meacci, G.; Liu, S.; Gondarenko, A.A.; Mathur, A.; Roca-Cusachs, P. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl. Acad. Sci. USA 2012, 109, 5328–5333. [Google Scholar] [CrossRef] [Green Version]
- Broders-Bondon, F.; Ho-Bouldoires, N.T.H.; Fernandez-Sanchez, M.E.; Farge, E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol. 2018, 217, 1571. [Google Scholar] [CrossRef]
- Sawada, Y.; Tamada, M.; Dubin-Thaler, B.J.; Cherniavskaya, O.; Sakai, R.; Tanaka, S. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 2006, 127, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Gupton, S.L.; Anderson, K.L.; Kole, T.P.; Fischer, R.S.; Ponti, A.; Hitchcock-DeGregori, S.E. Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 2005, 168, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Petrie, R.J.; Yamada, K.M. At the leading edge of three-dimensional cell migration. J. Cell Sci. 2012, 125, 5917–5926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Sun, A.; Ma, H.; Yao, K.; Zhou, N.; Shen, L. Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells. J. Cell Mol. Med. 2011, 15, 2245–2261. [Google Scholar] [CrossRef] [PubMed]
- Boothe, S.D.; Myers, J.D.; Pok, S.; Sun, J.; Xi, Y.; Nieto, R.M. The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials. Cell Biochem. Biophys. 2016, 74, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Cahalan, S.M.; Lukacs, V.; Ranade, S.S.; Chien, S.; Bandell, M.; Patapoutian, A. Piezo1 links mechanical forces to red blood cell volume. eLife 2015, 4. [Google Scholar] [CrossRef]
- Hsu, C.K.; Lin, H.H.; Harn, H.I.; Hughes, M.W.; Tang, M.J.; Yang, C.C. Mechanical forces in skin disorders. J. Derm. Sci. 2018, 90, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Umesh, V.; Rape, A.D.; Ulrich, T.A.; Kumar, S. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling. PLoS ONE 2014, 9, 101771. [Google Scholar] [CrossRef]
- Klingberg, F.; Chow, M.L.; Koehler, A.; Boo, S.; Buscemi, L.; Quinn, T.M. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J. Cell Biol. 2014, 207, 283–297. [Google Scholar] [CrossRef]
- Koo, L.Y.; Irvine, D.J.; Mayes, A.M.; Lauffenburger, D.A.; Griffith, L.G. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci. 2002, 115, 1423. [Google Scholar] [PubMed]
- Menon, S.; Beningo, K.A. Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation. PLoS ONE 2011, 6, 17277. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 2001, 537, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Heise, R.L.; Stober, V.; Cheluvaraju, C.; Hollingsworth, J.W.; Garantziotis, S. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J. Biol. Chem. 2011, 286, 17435–17444. [Google Scholar] [CrossRef] [PubMed]
- Komuro, I.; Katoh, Y.; Kaida, T.; Shibazaki, Y.; Kurabayashi, M.; Hoh, E. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J. Biol. Chem. 1991, 266, 1265–1268. [Google Scholar]
- Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharm. 2014, 5, 123. [Google Scholar] [CrossRef]
- Beitler, J.R.; Malhotra, A.; Thompson, B.T. Ventilator-induced Lung Injury. Clin. Chest Med. 2016, 37, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.K. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2012, 185, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.M.; Lorell, B.H. Regulation of Cardiac Contraction and Relaxation. Circulation 2000, 102, Iv69–Iv74. [Google Scholar]
- Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Y.Z.; Aggarwal, M.; Morgan, K.G. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharm. Rev. 2016, 68, 476–532. [Google Scholar] [PubMed]
- Pehlivanoğlu, B.; Bayrak, S.; Doğan, M. A close look at the contraction and relaxation of the myometrium; the role of calcium. J. Turk Ger. Gynecol. Assoc. 2013, 14, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Bannister, J.J.; Read, N.W.; Donnelly, T.C.; Sun, W.M. External and internal anal sphincter responses to rectal distension in normal subjects and in patients with idiopathic faecal incontinence. Br. J. Surg. 1989, 76, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.S. Signaling for contraction and relaxation in smooth muscle of the gut. Annu. Rev. Physiol. 2006, 68, 345–374. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Rodrigues, T.M.; Martins-Marques, T.; Morel, S.; Kwak, B.R.; Girão, H. Role of connexin 43 in different forms of intercellular communication – gap junctions, extracellular vesicles and tunnelling nanotubes. J. Cell Sci. 2017, 130, 3619–3630. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.N.; Martin, D.N.; Shaver, P.; Madamanchi, C.; Muller-Borer, B.J.; Tulis, D.A. Control of vascular smooth muscle cell growth by connexin 43. Front Physiol. 2012, 3, 220. [Google Scholar] [CrossRef] [PubMed]
- Doring, B.; Shynlova, O.; Tsui, P.; Eckardt, D.; Janssen-Bienhold, U.; Hofmann, F. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J. Cell Sci. 2006, 119, 1715–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scimia, M.C.; Hurtado, C.; Ray, S.; Metzler, S.; Wei, K.; Wang, J. APJ acts as a dual receptor in cardiac hypertrophy. Nature 2012, 488, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Tse, J.M.; Cheng, G.; Tyrrell, J.A.; Wilcox-Adelman, S.A.; Boucher, Y.; Jain, R.K. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. USA 2012, 109, 911–916. [Google Scholar] [CrossRef]
- Jones, C.M.; Baker-Groberg, S.M.; Cianchetti, F.A.; Glynn, J.J.; Healy, L.D.; Lam, W.Y. Measurement science in the circulatory system. Cell Mol. Bioeng. 2014, 7, 1–14. [Google Scholar] [CrossRef]
- Davies, P.F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pr. Cardiovasc. Med. 2009, 6, 16–26. [Google Scholar] [CrossRef]
- Meskauskas, J.; Repetto, R.; Siggers, J.H. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: Is mechanical stress during eye rotations a factor? Invest. Ophthalmol. Vis. Sci. 2012, 53, 6271–6281. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, H.; Tsukahara, Y.; Negi, A.; Ogino, N.; Honda, Y. Measurement of vitreous oxygen tension in human eyes. Jpn. J. Ophthalmol. 1989, 33, 199–203. [Google Scholar] [PubMed]
- Iwaniec, U.T.; Turner, R.T. Influence of body weight on bone mass, architecture and turnover. J. Endocrinol. 2016, 230, R115–R130. [Google Scholar] [CrossRef] [PubMed]
- Schmoller, A.; Hass, T.; Strugovshchikova, O.; Melchert, U.H.; Scholand-Engler, H.G.; Peters, A. Evidence for a relationship between body mass and energy metabolism in the human brain. J. Cereb. Blood Flow Metab. 2010, 30, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.L.; Tulloch, N.L.; Razumova, M.V.; Saiget, M.; Muskheli, V.; Pabon, L. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation 2016, 134, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Peyton, K.J.; Durante, W. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1. Vasc. Biol. Microcirc. 2013, 304, H1634–H1643. [Google Scholar] [CrossRef] [Green Version]
- Chachisvilis, M.; Zhang, Y.L.; Frangos, J.A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl. Acad. Sci. USA 2006, 103, 15463. [Google Scholar] [CrossRef]
- Wung, B.S.; Cheng, J.J.; Chao, Y.J.; Hsieh, H.J.; Wang, D.L. Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ. Res. 1999, 84, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Cezar, C.A.; Roche, E.T.; Vandenburgh, H.H.; Duda, G.N.; Walsh, C.J.; Mooney, D.J. Biologic-free mechanically induced muscle regeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 1534. [Google Scholar] [CrossRef]
- Robinson, D.A. The Mechanics of Human Saccadic Eye Movement. J. Physiol. 1964, 174, 245–264. [Google Scholar] [CrossRef]
- Ovchinnikova, E.; Hoes, M.; Ustyantsev, K.; Bomer, N.; de Jong, T.V.; van der Mei, H. Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Rep. 2018, 10, 794–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoppel, W.L.; Kaplan, D.L.; Black, L.D. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv. Drug Deliv. Rev. 2016, 96, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Herum, K.M.; Choppe, J.; Kumar, A.; Engler, A.J.; McCulloch, A.D. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol. Biol. Cell 2017, 28, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Tulloch, N.L.; Muskheli, V.; Razumova, M.V.; Korte, F.S.; Regnier, M. Hauch K.D. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 2011, 109, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Nawroth, J.C.; Lee, H.; Feinberg, A.W.; Ripplinger, C.M.; McCain, M.L.; Grosberg, A. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 2012, 30, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.L.; Yang, Y.H. Effect of mechanical stretch on rat neonatal cardiomyocyte somatostatin receptor subtype 1 expression. J. Acute Med. 2011, 1, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Shyu, K.G.; Chao, Y.M.; Wang, B.W.; Kuan, P. Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension 2005, 46, 614–621. [Google Scholar] [CrossRef]
- Leri, A.; Claudio, P.P.; Li, Q.; Wang, X.; Reiss, K.; Wang, S. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J. Clin. Investig. 1998, 101, 1326–1342. [Google Scholar] [CrossRef]
- Salameh, A.; Wustmann, A.; Karl, S.; Blanke, K.; Apel, D.; Rojas-Gomez, D. Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ. Res. 2010, 106, 1592–1602. [Google Scholar] [CrossRef]
- De Jong, A.M.; Maass, A.H.; Oberdorf-Maass, S.U.; De Boer, R.A.; Van Gilst, W.H.; Van Gelder, I.C. Cyclical stretch induces structural changes in atrial myocytes. J. Cell. Mol. Med. 2013, 17, 743–753. [Google Scholar] [CrossRef] [Green Version]
- McCain, M.L.; Yuan, H.; Pasqualini, F.S.; Campbell, P.H.; Parker, K.K. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1525–H1539. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.P.; Wang, B.W.; Chen, S.C.; Chang, H.; Shyu, K.G. Mechanical stretch induces the apoptosis regulator PUMA in vascular smooth muscle cells. Cardiovasc. Res. 2012, 93, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Nishimura, Y.; Kimura, A.; Ozawa, K.; Kondo, T.; Tanaka, T. Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch. Sci. Rep. 2017, 7, 16128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruden, G.; Thomas, S.; Burt, D.; Lane, S.; Chusney, G.; Sacks, S. Mechanical stretch induces vascular permeability factor in human mesangial cells: Mechanisms of signal transduction. Proc. Natl. Acad. Sci. USA 1997, 94, 12112–12116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.P.X.; Mendoza-Topaz, C.; Howard, G.; Chadwick, J.; Shvets, E.; Cowburn, A.S. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J. Cell Biol. 2015, 211, 53–61. [Google Scholar] [CrossRef]
- Li, F.; Sun, X.; Zhao, B.; Ma, J.; Zhang, Y.; Li, S. Effects of cyclic tension stress on the apoptosis of osteoclasts in vitro. Exp. Med. 2015, 9, 1955–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, H.; Fukuno, N.; Kanda, Y.; Kantoh, Y.; Chida, T.; Nagaura, Y. The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis induction in osteoblasts. J. Biol. Chem. 2014, 289, 6438–6450. [Google Scholar] [CrossRef]
- Juffer, P.; Jaspers, R.T.; Klein-Nulend, J.; Bakker, A.D. Mechanically loaded myotubes affect osteoclast formation. Calcif Tissue Int. 2014, 94, 319–326. [Google Scholar] [CrossRef]
- Li, J.M.; Zhang, Y.; Ren, Y.; Liu, B.G.; Lin, X.; Yang, J. Uniaxial cyclic stretch promotes osteogenic differentiation and synthesis of BMP2 in the C3H10T1/2 cells with BMP2 gene variant of rs2273073 (T/G). PLoS ONE 2014, 9, e106598. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, P.; Chen, Y.; Yang, L.; Jiang, C.; Jiang, P. Down-regulated expression of vimentin induced by mechanical stress in fibroblasts derived from patients with ossification of the posterior longitudinal ligament. Eur. Spine J. 2014, 23, 2410–2415. [Google Scholar] [CrossRef]
- Aljamal-Naylor, R.; Wilson, L.; McIntyre, S.; Rossi, F.; Harrison, B.; Marsden, M. Allosteric modulation of beta1 integrin function induces lung tissue repair. Adv. Pharmacol. Sci. 2012, 2012, 768720. [Google Scholar] [CrossRef] [PubMed]
- Sebag, S.C.; Bastarache, J.A.; Ware, L.B. Mechanical stretch inhibits lipopolysaccharide-induced keratinocyte-derived chemokine and tissue factor expression while increasing procoagulant activity in murine lung epithelial cells. J. Biol. Chem. 2013, 288, 7875–7884. [Google Scholar] [CrossRef] [PubMed]
- Yehya, N.; Yerrapureddy, A.; Tobias, J.; Margulies, S.S. MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genom. 2012, 13, 154. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.R.; Wedgwood, S.; Czech, L.; Kim, G.A.; Lakshminrusimha, S.; Schumacker, P.T. Cyclic stretch induces inducible nitric oxide synthase and soluble guanylate cyclase in pulmonary artery smooth muscle cells. Int. J. Mol. Sci. 2013, 14, 4334–4348. [Google Scholar] [CrossRef] [PubMed]
- Christiaansen, C.E.; Sun, Y.; Hsu, Y.C.; Chai, T.C. Alterations in expression of HIF-1alpha, HIF-2alpha, and VEGF by idiopathic overactive bladder urothelial cells during stretch suggest role for hypoxia. Urology 2011, 77, e7–e11. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yue, X.; Luo, D.; Wazir, R.; Wang, J.; Wu, T. Increased proliferation of human bladder smooth muscle cells is mediated by physiological cyclic stretch via the PI3KSGK1Kv1.3 pathway. Mol. Med. Rep. 2013, 8, 294–298. [Google Scholar] [CrossRef]
- Park, K.S.; Han, M.H.; Jang, H.K.; Kim, K.A.; Cha, E.J.; Kim, W.J. The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell. Korean J. Physiol. Pharmacol. 2013, 17, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Quill, B.; Irnaten, M.; Docherty, N.G.; McElnea, E.M.; Wallace, D.M.; Clark, A.F. Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells. Br. J. Ophthalmol. 2015, 99, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Beckel, J.M.; Argall, A.J.; Lim, J.C.; Xia, J.; Lu, W.; Coffey, E.E. Mechanosensitive release of adenosine 5′-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: A mechanism for purinergic involvement in chronic strain. Glia 2014, 62, 1486–1501. [Google Scholar] [CrossRef]
- Kinoshita, H.; Suzuma, K.; Maki, T.; Maekawa, Y.; Matsumoto, M.; Kusano, M. Cyclic stretch and hypertension increase retinal succinate: Potential mechanisms for exacerbation of ocular neovascularization by mechanical stress. Invest. Ophthalmol. Vis. Sci. 2014, 55, 4320–4326. [Google Scholar] [CrossRef]
- Liu, C.; Feng, P.; Li, X.; Song, J.; Chen, W. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch. Exp. Biol. Med. 2014, 239, 907–912. [Google Scholar] [CrossRef]
- Avetisov, S.E.; Bubnova, I.A.; Novikov, I.A.; Antonov, A.A.; Siplivyi, V.I. Experimental study on the mechanical strain of corneal collagen. J. Biomech. 2013, 46, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, D.; Wu, Y.; Xu, C.; Zhang, F. Cyclic stretch induced gene expression of extracellular matrix and adhesion molecules in human periodontal ligament cells. Arch Oral Biol. 2015, 60, 447–455. [Google Scholar] [CrossRef]
- Chen, Y.; Mohammed, A.; Oubaidin, M.; Evans, C.A.; Zhou, X.; Luan, X. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene 2015, 566, 13–17. [Google Scholar] [CrossRef]
- Pan, J.; Wang, T.; Wang, L.; Chen, W.; Song, M. Cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells via the Rho signaling pathway. PLoS ONE 2014, 9, e91580. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, J.; Wang, T.; Song, M.; Chen, W. Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIalpha/caspase-3/PARP pathway. PLoS ONE 2013, 8, e75973. [Google Scholar]
- Saminathan, A.; Vinoth, K.J.; Wescott, D.C.; Pinkerton, M.N.; Milne, T.J.; Cao, T. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J. Periodontal. Res. 2012, 47, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Arulmoli, J.; Pathak, M.M.; McDonnell, L.P.; Nourse, J.L.; Tombola, F.; Earthman, J.C. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci. Rep. 2015, 5, 8499. [Google Scholar] [CrossRef]
- Gladman, S.J.; Huang, W.; Lim, S.N.; Dyall, S.C.; Boddy, S.; Kang, J. Improved Outcome after Peripheral Nerve Injury in Mice with Increased Levels of Endogenous Omega-3 Polyunsaturated Fatty Acids. J. Neurosci. 2012, 32, 563–571. [Google Scholar] [CrossRef]
- Ahmed, W.W.; Williams, B.J.; Silver, A.M.; Saif, T.A. Measuring nonequilibrium vesicle dynamics in neurons under tension. Lab. Chip. 2013, 13, 570–578. [Google Scholar] [CrossRef]
- Salvador, E.; Burek, M.; Förster, C.Y. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front. Cell. Neurosci. 2015, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Davidovich, N.; Chhour, P.; Margulies, S.S. Uses of Remnant Human Lung Tissue for Mechanical Stretch Studies. Cell Mol. Bioeng 2013, 6, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Hawwa, R.L.; Hokenson, M.A.; Wang, Y.; Huang, Z.; Sharma, S.; Sanchez-Esteban, J. Differential expression of MMP-2 and -9 and their inhibitors in fetal lung cells exposed to mechanical stretch: Regulation by IL-10. Lung 2011, 189, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, F.; Bianchi, C.; Fornaro, M.; Naccarato, G.; Menicagli, M.; Gomez-Morales, M.A. Matrix metalloproteinase (MMP)-2 and MMP-9 as inflammation markers of Trichinella spiralis and Trichinella pseudospiralis infections in mice. Parasite Immunol. 2014, 36, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Tyurina, Y.Y.; Tang, M.; Feng, W.; Stolz, D.B.; Clark, R.S.B. Mitochondrial injury after mechanical stretch of cortical neurons in vitro: Biomarkers of apoptosis and selective peroxidation of anionic phospholipids. J. Neurotrauma 2012, 29, 776–788. [Google Scholar] [CrossRef]
- Geddes-Klein, D.M.; Schiffman, K.B.; Meaney, D.F. Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J. Neurotrauma 2006, 23, 193–204. [Google Scholar] [CrossRef]
- Lu, D.; Kassab, G.S. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 2011, 8, 1379–1385. [Google Scholar] [CrossRef] [Green Version]
- Niklason, L.E.; Yeh, A.T.; Calle, E.A.; Bai, Y.; Valentín, A.; Humphrey, J.D. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad. Sci. USA 2010, 107, 3335. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.X.; Sui, B.D.; Hu, C.H.; Qiu, X.Y.; Zhao, P.; Jin, Y. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J. Tissue Eng. Regen Med. 2018, 12, 1432–1447. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.H.; Calle, E.A.; Zhao, L.; Lee, E.J.; Gui, L.; Raredon, M.B. Tissue-engineered lungs for in vivo implantation. Science 2010, 329, 538–541. [Google Scholar] [CrossRef]
Conditions | Relevance | Associated Molecules | Ref. |
---|---|---|---|
1 Hz, 20% for 24 h | Cardiac hypertension | Neonatal rat cardiomyocytes increased in SSTR mRNA, protein levels | [96] |
1 Hz, 20% for 24 h | Atherosclerosis | DDR2 upregulation mediated by angiotensin II and TGF-β1 | [97] |
9% elongation, and sustained for 4 h, 24 h | Ischemic and non-ischemic heart diseases | Myocyte apoptosis with increased angiotensin II and p53 | [98] |
1 Hz, 10% for 24 h | Dilated cardiomyopathy | Rat cardiomyocytes increased Cx43 expression in the lateral region of cardiomyocytes | [99] |
1 Hz, 15% for 24 h | Atrial fibrillation | Neonatal rat atrial cardiomyocytes increased (1) pERK and p38; (2) β/α-MHC ratio; (3) cell death (neither apoptosis nor autophagy); and (4) ANP, BNP, and GDF15 | [100] |
3% elongation, 8–30 kPa stiffness for 24h, 48 h | Cardiac fibrosis | Stretched cardiomyocytes upregulate FAK and smooth muscle α-actin fiber formation | [93] |
13 kPa, 90 kPa stiffness | Hypertension, aortic valve stenosis | Myocyte shortened in the stiff matrix of 90 kPa | [101] |
Conditions | Relevance | Associated Molecules | Ref. |
---|---|---|---|
Vascular | |||
1 Hz, 6% for 24 h | Physiologically relevant | Aortic endothelial cells maintain vascular cell survival via HO-1 | [86] |
1 Hz, 20% for 18 h | Atherosclerosis-elated cell death | Vascular smooth muscle cells increased in PUMA through IFN-γ, JNK, and IRF-1 pathways | [102] |
1 Hz, 15% for 4 h | Cardiovascular disease | Aortic vascular smooth muscle cells and JNK-and p38-dependent cell death | [103] |
1 Hz, 10% for 6 h | Hemodynamic abnormalities | Mesangial cells in the kidney to study PKC-and PTK-dependent mechanisms related to vascular permeability | [104] |
1 Hz, 20% for 10 min | Hemodynamic abnormalities | Caveolae protein protects endothelial cells from rupture under increased hemodynamic forces | [105] |
Muscle and Bone | |||
5%, 10%, and 15% for 1 h daily for 3 days | Bone mass loss, osteoporosis | Cyclic stress inhibited osteoclasts apoptosis by increasing the Bcl-2/Bax ratio and caspase-3 activity | [106] |
1/6 Hz, 12% and 1% | Osteoblasts response to mechanical stress | Induced Ca2+ influx, activated reactive oxygen species generation in MC3T3-E1 osteoblasts | [107] |
1 Hz, 15% for 1 h | Musculoskeletal diseases | Myotubes secrete soluble IL-6, which affects osteoclast formation | [108] |
0.5 Hz, 10% | Ossification of the posterior longitudinal ligament (OPLL) | BMP2 gene variant of rs2273073 (T/G) could promote bone transformation similar to pre-OPLL alterations, as well as sensibility to mechanical stress during OPLL progression. | [109] |
Ossification of ligament | Increased OCN, ALP, and COL I in OPLL cells compared to that non-OPLL cells | [110] | |
Lungs | |||
1 Hz, 2%–10% for 2, 4, or 6 h | Lung injury | Result show that a monoclonal antibody against β1 integrin reversed tissue injury in an animal model with degenerative lung disease | [111] |
0.1 Hz, 20% for 30 min or 2 h | Acute respiratory distress syndrome, acute lung injury | Lung epithelial cells had decreased LPS-mediated, inflammatory procoagulant expression through the modulation of actin organization and reducing TLR4 signaling. | [112] |
0.25 Hz, 25% for 1 h or 6 h | Differential expression study | Stretched and non-stretched alveolar epithelial cells show differential expression profiles | [113] |
1 Hz, 20% for 24 h | Pulmonary vasculature, vascular signaling, tone, and remodeling | Pulmonary artery smooth muscle cells increase soluble guanylate cyclase (sGC) expression and activity in an iNOS-dependent manner | [114] |
Bladder | |||
1 s stretch and 2 s relaxation, 20% | Overactive bladder symptoms | Increased HIF-1α, HIF-2α, and VEGF mRNA expression in overactive bladder urothelial cells | [115] |
0.05, 0.1, 0.2, 0.5 and 1 Hz; 2.5%, 5%, 10%, and 15% | Physiologically relevant | Human bladder smooth muscle cells show enhanced proliferation and an activated PI3K–SGK1–Kv1.3 pathway | [116] |
−60 mV and stretch at −40 mV or 40 mV | Bladder cancer | Bladder cancer cell lines express the TREK2 channel involved in cell cycle-dependent growth | [117] |
Eyes | |||
1 Hz, 15% for 24 h | Glaucoma, degenerative optic neuropathy | Increased TGF-β1, COL6A3, and CSPG2 were blocked by L-type calcium channel blocker verapamil. | [118] |
5%, or to hypotonic swelling | Glaucoma | Astrocytes release ATP with pannexin 1 pertaining to the efflux pathway | [119] |
1 Hz, 5% to 15% | Diabetic retinopathy | Accumulation of intracellular succinate and VEGF level after stretching. | [120] |
0.1 Hz, 5%, 10%, or 15% for 3 or 24 h. | Cornea injury | Increased pERK1/2 and inhibited, MEK pathway | [121] |
15 and 50 mm Hg pressure | Interpretation of intraocular pressure (IOP) | Corneal collagen is observed to have mechanical properties through light polarization analysis | [122] |
Periodontal Ligament | |||
10% for 6 or 24 h | Cellular response to force | Increased in integrin α5 protein | [123] |
0.1 Hz, 12% for 24 h | Cellular response to force | Increased extracellular matrix (ECM) (COL1A1, COL3A1, and COL5A1) gene expressions by stretching, but down-regulated by compressive force in human periodontal ligament cells | [124] |
0.1 Hz, 10% for 6 h or 24 h | Cellular response to force | Cytoskeletal rearrangement through Rho–GDIa downregulation; GTP–Rho, Rock, and p-cofilin upregulation in human periodontal ligament cells | [125] |
0.1 Hz, 20%, for 6 or 24 h | Cellular response to force | Altered morphology, increased apoptosis through RhoGDIα/caspase-3/PARP pathway in human periodontal ligament cells | [126] |
0.2 Hz, 12% for 5 s, every 90 s for 6–24 h | Cellular response to force | Reduced caspase-3 and caspase-7 activities in periodontal ligament cells | [127] |
Neurons | |||
10% static stretch | Traumatic brain injury | Oligodendrocytes differentiated from neural stem/progenitor cells were reduced on laminin surface | [128] |
20% for 1 h, followed by 24 h with no stretch | Peripheral nerve injury acute traumatic injury | ATF-3 decreased in the DRG of fat-1 mice | [129] |
20% for 40 min | Vesicle transport | Increased transport of vesicles with vesicle velocity unaltered | [130] |
20%, 35%, and 55% | Traumatic brain injury | Influenced calcium ion level and inflammatory response | [131] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, T.-Y.; Chang, S.-N.; Jhong, R.-C.; Tseng, C.-J.; Sun, G.-C.; Cheng, P.-W. Closer to Nature Through Dynamic Culture Systems. Cells 2019, 8, 942. https://doi.org/10.3390/cells8090942
Wong T-Y, Chang S-N, Jhong R-C, Tseng C-J, Sun G-C, Cheng P-W. Closer to Nature Through Dynamic Culture Systems. Cells. 2019; 8(9):942. https://doi.org/10.3390/cells8090942
Chicago/Turabian StyleWong, Tzyy-Yue, Sheng-Nan Chang, Rong-Chang Jhong, Ching-Jiunn Tseng, Gwo-Ching Sun, and Pei-Wen Cheng. 2019. "Closer to Nature Through Dynamic Culture Systems" Cells 8, no. 9: 942. https://doi.org/10.3390/cells8090942
APA StyleWong, T. -Y., Chang, S. -N., Jhong, R. -C., Tseng, C. -J., Sun, G. -C., & Cheng, P. -W. (2019). Closer to Nature Through Dynamic Culture Systems. Cells, 8(9), 942. https://doi.org/10.3390/cells8090942