Clinical and Genetic Findings in a Series of Eight Families with Arthrogryposis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Genetic Analysis
3. Results
3.1. Participants and Clinical Information
3.2. Clinical and Instrumental Findings in the Cohort
3.3. Molecular Diagnosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.G.; Reed, S.D.; Greene, G. The distal arthrogryposis: Delineation of new entities-review and nosologic discussion. Am. J. Med. Genet. 1982, 11, 185–239. [Google Scholar] [CrossRef]
- Hall, J.G. Arthrogryposis multiplex congenita: Etiology, genetics, classification, diagnostic approach, and general aspects. J. Pediatr. Orthop. B 1997, 6, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.G. Arthrogryposis (multiple congenital contractures): Diagnostic approach to etiology, classification, genetics, and general principles. Eur. J. Med. Genet. 2014, 57, 464–472. [Google Scholar] [CrossRef]
- OMIM—Online Mendelian Inheritance in Man®. Available online: https://www.omim.org/ (accessed on 16 November 2021).
- Fahy, M.J.; Hall, J.G. A retrospective study of pregnancy complications among 828 cases of arthrogryposis. Genet. Couns. 1990, 1, 3–11. [Google Scholar] [PubMed]
- Vanpaemel, L.; Schoenmakers, M.; van Nesselrooij, B.; Pruijs, H.; Helders, P. Multiple congenital contractures. J. Pediatr. Orthop. B 1997, 6, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Bevan, W.P.; Hall, J.G.; Bamshad, M.; Staheli, L.T.; Jaffe, K.M.; Song, K. Arthrogryposis multiplex congenita (amyoplasia): An orthopaedic perspective. J. Pediatr. Orthop. 2007, 27, 594–600. [Google Scholar] [CrossRef]
- Bernstein, R.M. Arthrogryposis and amyoplasia. J. Am. Acad. Orthop. Surg. 2002, 10, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.G. Don’t use the term “amyoplasia” loosely. Am. J. Med. Genet. 2002, 111, 344. [Google Scholar] [CrossRef]
- Sarwark, J.F.; MacEwen, G.D.; Scott, C.I., Jr. Amyoplasia (a common form of arthrogryposis). J. Bone Joint Surg. Am. 1990, 72, 465–469. [Google Scholar] [CrossRef]
- Sells, J.M.; Jaffe, K.M.; Hall, J.G. Amyoplasia, the most common type of arthrogryposis: The potential for good outcome. Pediatrics 1996, 97, 225–231. [Google Scholar] [CrossRef]
- Zhou, H. Embryonic movement stimulates joint formation and development: Implications in arthrogryposis multiplex congenita. Bioessays 2021, 43, e2000319. [Google Scholar] [CrossRef]
- Bamshad, M.; Van Heest, A.E.; Pleasure, D. Arthrogryposis: A Review and Update. J. Bone Joint Surg. Am. 2009, 91, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Griffet, J.; Dieterich, K.; Bourg, V.; Bourgeois, E. Amyoplasia and distal arthrogryposis. Orthop. Traumatol. Surg. Res. 2021, 107, 102781. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.G.; Aldinger, K.A.; Tanaka, K.I. Amyoplasia revisited. Am. J. Med. Genet. A 2014, 164, 700–730. [Google Scholar] [CrossRef]
- Bamshad, M.; Jorde, L.B.; Carey, J.C. A revised and extended classification of the distal arthrogryposes. Am. J. Med. Genet. 1996, 65, 277–281. [Google Scholar] [CrossRef]
- Beals, R.K. The distal arthrogryposes: A new classification of peripheral contractures. Clin. Orthop. Relat. Res. 2005, 435, 203–210. [Google Scholar] [CrossRef]
- McMillin, M.J.; Below, J.E.; Shively, K.M.; Beck, A.E.; Gildersleeve, H.I.; Pinner, J.; Gogola, G.R.; Hecht, J.T.; Grange, D.K.; Harris, D.J.; et al. Mutations in ECEL1 Cause Distal Arthrogryposis Type 5D. Am. J. Hum. Genet. 2013, 92, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieterich, K.; Quijano-Roy, S.; Monnier, N.; Zhou, J.; Fauré, J.; Smirnow, D.A.; Carlier, R.; Laroche, C.; Marcorelles, P.; Mercier, S.; et al. The Neuronal Endopeptidase ECEL1 Is Associated With a Distinct Form of Recessive Distal Arthrogryposis. Hum. Mol. Genet. 2013, 22, 1483–1492. [Google Scholar] [CrossRef] [Green Version]
- Alesi, V.; Sessini, F.; Genovese, S.; Calvieri, G.; Sallicandro, E.; Ciocca, L.; Mingoia, M.; Novelli, A.; Moi, P. A New Intronic Variant in ECEL1 in Two Patients with Distal Arthrogryposis Type 5D. Int. J. Mol. Sci. 2021, 22, 2106. [Google Scholar] [CrossRef]
- Gowda, M.; Mohan, S.; Ramesh, D.; Chinta, N. Distal arthrogryposis type 5D in a South Indian family caused by novel deletion in ECEL1 gene. Clin. Dysmorphol. 2021, 30, 100–103. [Google Scholar] [CrossRef]
- Michalk, A.; Stricker, S.; Becker, J.; Rupps, R.; Pantzar, T.; Miertus, J.; Botta, G.; Naretto, V.G.; Janetzki, C.; Yaqoob, N.; et al. Acetylcholine Receptor Pathway Mutations Explain Various Fetal Akinesia Deformation Sequence Disorders. Am. J. Hum. Genet. 2008, 82, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Bayram, Y.; Karaca, E.; Coban Akdemir, Z.; Yilmaz, E.O.; Tayfun, G.A.; Aydin, H.; Torun, D.; Bozdogan, S.T.; Gezdirici, A.; Isikay, S.; et al. Molecular Etiology of Arthrogryposis in Multiple Families of Mostly Turkish Origin. J. Clin. Investig. 2016, 126, 762–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdès-Flores, M.; Casas-Avila, L.; Hernández-Zamora, E.; Kofman, S.; Hidalgo-Bravo, A. Characterization of a Group Unrelated Patients with Arthrogryposis Multiplex Congenita. J. Pediatr. 2016, 92, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, J.; Hall, J.G. Geno ontology analysis of arthrogryposis (multiple congenital contractures). Am. J. Med. Genet. C Semin. Med. Genet. 2019, 181, 310–326. [Google Scholar] [CrossRef]
- Laquerriere, A.; Jaber, D.; Abiusi, E.; Maluenda, J.; Mejlachowicz, D.; Vivanti, A.; Dieterich, K.; Stoeva, R.; Quevarec, L.; Nolent, F.; et al. Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenita. J. Med. Genet. 2021. [Google Scholar] [CrossRef]
- Pehlivan, D.; Bayram, Y.; Gunes, N.; Coban Akdemir, Z.; Shukla, A.; Bierhals, T.; Tabakci, B.; Sahin, Y.; Gezdirici, A.; Fatih, J.M.; et al. The Genomics of Arthrogryposis, a Complex Trait: Candidate Genes and Further Evidence for Oligogenic Inheritance. Am. J. Hum. Genet. 2019, 105, 132–150. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- The Human Phenotype Ontology (HPO). Available online: https://hpo.jax.org/app/tools/phenomizer (accessed on 16 November 2021).
- Hall, J.G. Deformations associated with arthrogryposis. Am. J. Med. Genet. A 2021, 185, 2676–2682. [Google Scholar] [CrossRef] [PubMed]
- Bénard, M.; Sesqué, A.; Barthélémy, I.; Depeyre, A. Arthrogryposis multiplex congenita and limitation of mouth opening: Presentation of a case and review of the literature. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 101–106. [Google Scholar] [CrossRef]
- Marttila, M.; Lehtokari, V.L.; Marston, S.; Nyman, T.A.; Barnerias, C.; Beggs, A.H.; Bertini, E.; Ceyhan-Birsoy, O.; Cintas, P.; Gerard, M.; et al. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum. Mutat. 2014, 35, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Pena, S.D.J.; Shokeir, M.H.K. Syndrome of camptodactyly, multiple ankyloses, facial anomalies, and pulmonary hypoplasia: A lethal condition. J. Pediatr. 1974, 85, 373–375. [Google Scholar] [CrossRef]
- Hellmund, A.; Berg, C.; Geipel, A.; Müller, A.; Gembruch, U. Prenatal diagnosis of fetal akinesia deformation sequence (FADS): A study of 79 consecutive cases. Arch. Gynecol. Obstet. 2016, 294, 697–707. [Google Scholar] [CrossRef]
- Busack, B.; Ott, C.E.; Henrich, W.; Verlohren, S. Prognostic significance of prenatal ultrasound in fetal arthrogryposis multiplex congenita. Arch. Gynecol. Obstet. 2021, 303, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Filges, I.; Tercanli, S.; Hall, J.G. Fetal Arthrogryposis: Challenges and Perspectives for Prenatal Detection and Management. Am. J. Med. Genet. C Semin. Med. Genet. 2019, 181, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Zhen, L.; Xu, L.L.; Li, D.Z. Fetal akinesia: The need for clinical vigilance in first trimester with decreased fetal movements. Taiwan J. Obstet. Gynecol. 2021, 60, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Yang, Y.; Pan, M.; Han, J.; Yang, X.; Li, D.Z. Fetal akinesia: The application of clinical exome sequencing in cases with decreased fetal movement. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 59–63. [Google Scholar] [CrossRef]
- Erkula, G.; Sponseller, P.D.; Paulsen, L.C.; Oswald, G.L.; Loeys, B.L.; Dietz, H.C. Musculoskeletal findings of Loeys-Dietz syndrome. J. Bone Joint Surg. Am. 2010, 92, 1876–1883. [Google Scholar] [CrossRef]
- Viassolo, V.; Lituania, M.; Marasini, M.; Dietz, H.; Benelli, F.; Forzano, F.; Faravelli, F. Fetal aortic root dilation: A prenatal feature of the Loeys-Dietz syndrome. Prenat. Diagn. 2006, 26, 1081–1083. [Google Scholar] [CrossRef]
- Chung, B.H.; Bradley, T.; Grosse-Wortmann, L.; Blaser, S.; Dirks, P.; Hinek, A.; Chitayat, D. Hand and fibrillin-1 deposition abnormalities in Loeys-Dietz syndrome—Expanding the clinical spectrum. Am. J. Med. Genet. A 2014, 164, 461–466. [Google Scholar] [CrossRef]
- Valenzuela, I.; Fernández-Alvarez, P.; Munell, F.; Sanchez-Montanez, A.; Giralt, G.; Vendrell, T.; Tizzano, E.F. Arthrogryposis as neonatal presentation of Loeys-Dietz syndrome due to a novel TGFBR2 mutation. Eur. J. Med. Genet. 2017, 60, 303–307. [Google Scholar] [CrossRef]
- Schirwani, S.; Sarkozy, A.; Phadke, R.; Childs, A.M.; Mein, R.; Ismail, A.; Smith, A.; Muntoni, F.; Hobson, E.; Pysden, K. Homozygous intronic variants in TPM2 cause recessively inherited Escobar variant of multiple pterygium syndrome and congenital myopathy. Neuromuscul. Disord. 2021, 31, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Morgan, N.V.; Rehal, P.; Faivre, L.; Brueton, L.A.; Becker, K.; Fryns, J.P.; Holder, S.; Islam, L.; Kivuva, E.; et al. CHRNG genotype-phenotype correlations in the multiple pterygium syndromes. J. Med. Genet. 2012, 49, 21–26. [Google Scholar] [CrossRef]
- Shaheen, R.; Al-Owain, M.; Khan, A.O.; Zaki, M.S.; Hossni, H.A.; Al-Tassan, R.; Eyaid, W.; Alkuraya, F.S. Identification of three novel ECEL1 mutations in three families with distal arthrogryposis type 5D. Clin. Genet. 2014, 85, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, U.; D’Argenzio, L.; Mathur, S.; Whyte, T.; Quinlivan, R.; Longman, C.; Farrugia, M.E.; Manzur, A.; Willis, T.; Jungbluth, H.; et al. ECEL1 gene related contractural syndrome: Long-term follow-up and update on clinical and pathological aspects. Neuromuscul. Disord. 2018, 28, 741–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pt 1 (Fy1) | Pt 2 (Fy1) | Pt 3 (Fy1) | Pt 4 (Fy2) | Pt 5 (Fy2) | Pt 6 (Fy2) | Pt 7 (Fy3) | Pt 8 (Fy3) | Pt 9 (Fy4) | Pt 10 (Fy5) | Pt 11 (Fy6) | Pt 12 (Fy7) | Pt 13 (Fy8) | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
General information | ||||||||||||||
Sex | M | F | F | M | F | F | F | F | M | F | M | F | F | |
Age at first evaluation | PP | 20 y | 44 y | 1 d | PP | PP | 1 m | 27 y | 6 d | 1 d | 1 y | 3 y | 16 y | |
Current age (years) | 4 | 25 | 49 | 31 | 5 | 4 | 2 | 29 | 15 | 9 | 2 | 31 | 37 | |
Prenatal findings | ||||||||||||||
Ultrasound abnormalities | + | − | N.A. | + | + | + | + | − | − | + | − | + | − | 7/12 = 58% |
Postnatal features | ||||||||||||||
Short stature | − | + | − | + | − | + | − | − | + | + | − | − | + | 6/13 = 46% |
Ptosis | − | − | − | − | − | − | − | − | + | + | − | − | + | 3/13 = 23% |
Epicanthus | − | − | − | − | − | − | − | − | + | + | − | − | + | 3/13 = 23% |
Narrow mouth | + | + | − | + | + | + | − | − | − | + | − | − | + | 7/13 = 54% |
Microretrognathia | + | − | − | + | + | + | + | + | + | + | + | + | + | 11/13 = 85% |
Trismus | + | + | + | + | + | + | − | − | − | + | − | − | + | 8/13= 61% |
Myopathic facies | − | − | − | − | − | − | − | − | + | + | − | − | + | 3/13= 23% |
Ulnar deviation of the hand | + | + | − | + | + | + | + | + | + | + | + | − | + | 11/13 = 85% |
Hand clenching | + | − | − | + | + | + | + | − | + | + | + | − | − | 8/13 = 61% |
Adducted thumb | + | + | − | + | + | + | + | + | + | + | + | − | + | 11/13 = 85% |
Overlapping fingers | + | − | − | + | + | + | + | + | − | + | + | + | − | 9/13 = 69% |
Camptodactyly | + | − | − | + | + | + | − | + | + | + | − | − | + | 8/13 = 61% |
Single transverse palmar crease | + | − | − | + | + | + | − | − | + | + | + | − | + | 8/13 = 61% |
Talipes equinovarus | + | + | + | + | − | + | − | − | − | − | + | + | + | 8/13 = 61% |
Rocker bottom foot | − | − | − | − | + | − | + | + | + | + | − | − | − | 5/13 = 38% |
Overlapping toes | + | + | + | + | + | − | + | − | + | − | + | + | + | 10/13 = 77% |
Prominent calcaneus | + | − | − | + | + | − | + | + | + | + | + | + | − | 9/13 = 69% |
Pterygium | − | + | + | + | − | − | − | − | + | + | − | + | + | 7/13 = 54% |
Scoliosis | − | − | + | − | − | − | − | − | + | + | − | + | + | 5/13 = 38% |
Hip dysplasia | − | − | − | + | − | − | − | − | + | + | − | − | − | 3/13 = 23% |
Other clinical findings | + | + | + | − | + | + | + | + | + | + | + | + | + | 12/13 = 92% |
Genetic testing | ||||||||||||||
Molecular diagnosis | het NM_003289.4(TPM2): c.463G>A, p.(A155T) | het NM_006757.3(TNNT3): c.187C>T, p.(R63C) | het NM_001145829.1(TNNI2): c.499_501del, p.(E167del) | comp het NM_004826(ECEL1): c.[1630C>T];[1700C>G], p.[(R544C)];[(P567R)] | hom NM_005199.4(CHRNG): c.459dup, p.(V154Sfs*24) | het NM_ 001024847.2(TGFBR2): c.1595dupA, p.(H532Qfs*9) | / | / | 11/12 = 92% | |||||
Diagnosis | DA 1 | DA 1 | DA 2B | DA 5D | EVMPS | LDS 2 | A | U | ||||||
Treatment | ||||||||||||||
Physiotherapy | + | − | − | − | + | + | + | − | + | + | + | − | + | 8/13 = 61% |
Orthopedic devices | + | + | − | + | + | + | + | + | + | + | + | + | + | 12/13 = 92% |
Number of surgeries | 4 | 2 | 1 | 5 | 1 | − | 1 | 1 | 5 | 2 | 2 | 5 | 6 | 12/13 = 92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollazzon, M.; Caraffi, S.G.; Faccioli, S.; Rosato, S.; Fodstad, H.; Campos-Xavier, B.; Soncini, E.; Comitini, G.; Frattini, D.; Grimaldi, T.; et al. Clinical and Genetic Findings in a Series of Eight Families with Arthrogryposis. Genes 2022, 13, 29. https://doi.org/10.3390/genes13010029
Pollazzon M, Caraffi SG, Faccioli S, Rosato S, Fodstad H, Campos-Xavier B, Soncini E, Comitini G, Frattini D, Grimaldi T, et al. Clinical and Genetic Findings in a Series of Eight Families with Arthrogryposis. Genes. 2022; 13(1):29. https://doi.org/10.3390/genes13010029
Chicago/Turabian StylePollazzon, Marzia, Stefano Giuseppe Caraffi, Silvia Faccioli, Simonetta Rosato, Heidi Fodstad, Belinda Campos-Xavier, Emanuele Soncini, Giuseppina Comitini, Daniele Frattini, Teresa Grimaldi, and et al. 2022. "Clinical and Genetic Findings in a Series of Eight Families with Arthrogryposis" Genes 13, no. 1: 29. https://doi.org/10.3390/genes13010029