Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Plant Morphology and Biomass Measurements
2.2.2. Saponin Accumulation Was Determined
2.2.3. Acquisition and Screening of SNP
2.2.4. Data Processing Analysis
3. Results
3.1. Analysis of Differences in Agronomic Traits Among P. notoginseng Cultivars
3.2. Analysis of Agronomic Trait Variation and Cluster Analysis
3.3. Analysis of Saponin Accumulation in the Main Root Among Different P. notoginseng Cultivars
3.4. SNP-Based Genetic Diversity Analysis
3.4.1. SNP Polymorphism Analysis
3.4.2. NJ Cluster Analysis Based on SNP
3.5. Correlation Analysis and Comprehensive Evaluation
4. Discussion
4.1. Genetic Variation in Agronomic Traits Among Different P. notoginseng Cultivars
4.2. Differences in Saponin Accumulation in the Main Root Among Different P. notoginseng Cultivars
4.3. Correlation Between Agronomic Traits and Total Saponin Accumulation of P. notoginseng
4.4. SNP-Based Genetic Diversity Analysis Reveals the Genetic Structure and Differentiation Characteristics
4.5. Correlation Analysis of Genetic Diversity, Agronomic Trait Clustering, and Comprehensive Evaluation in P. notoginseng
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CV | Coefficient of variation |
HPLC | High-performance liquid chromatography |
SNP | Single-nucleotide polymorphism |
Chr | Chromosome |
QTL | Quantitative trait locus |
NJ | Neighbor-joining |
GATK | Genome Analysis Toolkit |
References
- Tao, A.; Zhang, Y.; Gan, Z.; Yin, C.; Tian, Y.; Zhang, L.; Zhong, X.; Fang, X.; Jiang, G.; Zhang, R. Isolation, structural features, and bioactivities of polysaccharides from Panax notoginseng: A review. Int. J. Biol. Macromol. 2024, 280, 135765. [Google Scholar] [CrossRef]
- Li, W.; Shi, H.; Wu, X. A narrative review of Panax notoginseng: Unique saponins and their pharmacological activities. J. Ginseng Res. 2025, 49, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, L.; Man, J.; Hu, Y.; Cui, X. Chemical and bioactive comparison of Panax notoginseng root and rhizome in raw and steamed forms. J. Ginseng Res. 2019, 43, 385–393. [Google Scholar] [CrossRef]
- Xu, C.; Wang, W.; Wang, B.; Zhang, T.; Cui, X.; Pu, Y.; Li, N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. J. Ethnopharmacol. 2019, 236, 443–465. [Google Scholar] [CrossRef]
- Xiang, C.; Zhou, R.; Zhang, Y.; Zhang, J.; Yang, H. Research progress on saponins in Panax notoginseng and their molecular mechanism of anti-cerebral ischemia. China J. Chin. Mater. Medica 2020, 45, 3045–3054. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Huai, J.; Wang, H.; Li, S.; Zhuang, L.; Zhang, J. An online preparative high-performance liquid chromatography system with enrichment and purification modes for the efficient and systematic separation of Panax notoginseng saponins. J. Chromatogr. A 2023, 1709, 464378. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Chen, K.; Zhang, Y.; Yang, C. HPLC Comparative Analysis of Ginsenoside Saponins in Different Underground Parts of Panax notoginseng. Acta Bot. Yunnanica 2005, 27, 685–690. [Google Scholar]
- Cun, Z.; Zhang, L.; Zhang, J.; Wu, H.; Shuang, S.; Chen, J. Effects of the harvest month and year on the agronomic traits and saponins of Panax notoginseng (Burk.) F. H. Chen. J. Appl. Environ. Biol. 2022, 28, 645–654. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; He, J.; Abliz, Z.; Qu, J.; Yu, S.; Ma, S.; Liu, J.; Du, D. Identification of new trace triterpenoid saponins from the roots of Panax notoginseng by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, B.; Zhang, J. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agron. Sin. 2022, 48, 1853–1870. (In Chinese) [Google Scholar] [CrossRef]
- Guan, H.; Lu, Y.; Li, X.; Liu, B.; Li, Y.; Zhang, D.; Liu, X.; He, G.; Li, Y.; Wang, H.; et al. Development of a MaizeGerm50K array and application to maize genetic studies and breeding. Crop J. 2024, 12, 1686–1696. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, R.; Zhang, A.; Zhao, Y.; Shi, M.; Deng, L.; Cui, Z.; Ruan, Y. Heterotic Grouping by Core SNP Markers for Maize Inbred Lines Widely Used in Liaoning Province. J. Maize Sci. 2018, 26, 17–23. (In Chinese) [Google Scholar]
- Lu, Y.; Han, Q.; Ai, W.; Shi, B.; Wang, Y.; Pan, C.; Shen, X. Genetic diversity of waxy maize germplasm revealed by SNP-chips. J. Maize Sci. 2020, 28, 44–51. (In Chinese) [Google Scholar]
- Fan, G.; Liu, X.; Sun, S.; Shi, C.; Du, X.; Han, K.; Yang, B.; Fu, Y.; Liu, M.; Seim, I.; et al. The Chromosome Level Genome and Genome-wide Association Study for the Agronomic Traits of Panax Notoginseng. iScience 2020, 23, 101538. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, Y.; Yang, Y.; Qu, Y.; Cui, X.; Ge, F.; Liu, D. Development of SSR markers on the basis of the Panax notoginseng transcriptome for agronomic and biochemical trait association analyses. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100475. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, T.; Yan, W.; Shen, S.; Xiao, M.; Bai, L.; Duan, C.; Luo, X.; Che, B.; Zhang, L. Construction of Molecular Identity of Coptis teeta Wall. Based on SNP Markers. J. Southwest Univ. Nat. Sci. Ed. 2025, 47, 103–112. [Google Scholar] [CrossRef]
- Gand, M.; Bloemen, B.; Vanneste, K.; Roosens, N.H.C.; De Keersmaecker, S.C.J. Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing to detect bacteria. BMC Genom. 2023, 24, 438. [Google Scholar] [CrossRef]
- Liang, Y.; Ou, L.; Wei, H.; Teng, Y.; Ye, J. A preliminary study on the variation patterns of main agronomic traits of Panax notoginseng. Bull. Agric. Sci. Technol. 2018, 4, 153–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Li, G.; Zhao, P.; Zhao, C.; Chen, J.; Xiao, X. Characterizations of “Drumstick-forming” on Yields and Saponin Contents of Taproots of Panax notoginseng. J. Chin. Med. Mater. 2021, 44, 773–779. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Wang, B.; Zhu, Y.; Cui, X. Study on determination and calculation method of leaf area of Panax notoginseng. Res. Pract. Chin. Med. 2003, S1, 64. (In Chinese) [Google Scholar]
- Zhu, W.; Wang, Q. High-performance Liquid Chromatography in Different Years Thirty-seven Saponin Content. J. Anhui Agric. Sci. 2012, 40, 1407–1408+1651. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Sandmann, S.; de Graaf, A.O.; Karimi, M.; van der Reijden, B.A.; Hellström-Lindberg, E.; Jansen, J.H.; Dugas, M. Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data. Sci. Rep. 2017, 7, 43169. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Wang, X.; Yu, X.; Liao, Y.; Zhang, H.; Li, L.; Wang, Y.; Liu, B.; Li, W. Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis. Hortic. Res. 2024, 11, uhae107. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Ren, L.; Tian, X.; Tang, S.; Xian, Y.; Wu, X.; Zhang, Z. Prediction of Chinese suitable habitats of Panax notoginseng under climate change based on MaxEnt and chemometric methods. Sci. Rep. 2024, 14, 16434. [Google Scholar] [CrossRef]
- Liao, D.; Jia, C.; Sun, P.; Qi, J.; Li, X. Quality evaluation of Panax quinquefolium from different cultivation regions based on their ginsenoside content and radioprotective effects on irradiated mice. Sci. Rep. 2019, 9, 1079. [Google Scholar] [CrossRef]
- Langridge, P.; Braun, H.; Hulke, B.; Ober, E.; Prasanna, B.M. Breeding crops for climate resilience. Theor. Appl. Genet. 2021, 134, 1607–1611. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, H.; Chen, K.; Xu, M.; Zhang, Y.; Yang, C. Saponin accumulation in the seedling root of Panax notoginseng. Chin. Med. 2011, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yang, S.; Chen, Z.; Shen, Y.; Wei, F.; Wang, W.; Long, T. Contents of total anthocyanins and total saponins as well as composition of saponin monomers of Purple and Green Notoginseng Radix et Rhizoma. J. Chin. Med. Mater. 2014, 37, 1749. (In Chinese) [Google Scholar]
- Geng, X.; Wang, J.; Liu, Y.; Liu, L.; Liu, X.; Zhao, Y.; Wang, C.; Liu, J. Research progress on chemical diversity of saponins in Panax ginseng. Chin. Herb. Med. 2024, 16, 529–547. [Google Scholar] [CrossRef]
- Cai, J.; Huang, K.; Han, S.; Chen, R.; Li, Z.; Chen, Y.; Chen, B.; Li, S.; Lin, X.; Yao, H. A comprehensive system review of pharmacological effects and relative mechanisms of Ginsenoside Re: Recent advances and future perspectives. Phytomedicine 2022, 102, 154119. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, G.; Zhang, G.; Yan, J.; Dong, Y.; Lu, Y.; Fan, W.; Hao, B.; Lin, Y.; Li, Y.; et al. The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis. Plant Biotechnol. J. 2021, 19, 869–871. [Google Scholar] [CrossRef]
- Man, J.; Shi, Y.; Huang, Y.; Zhang, X.; Wang, X.; Liu, S.; He, G.; An, K.; Han, D.; Wang, X.; et al. PnMYB4 negatively modulates saponin biosynthesis in Panax notoginseng through interplay with PnMYB1. Hortic. Res. 2023, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, C.; Wei, W.; Wei, Y.; Liu, Q.; Zhao, G.; Yue, J.; Yan, X.; Wang, P.; Zhou, Z. The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis. Sci. Rep. 2020, 10, 15394. [Google Scholar] [CrossRef] [PubMed]
- Kochkin, D.V.; Galishev, B.A.; Glagoleva, E.S.; Titova, M.V.; Nosov, A.M. Rare triterpene glycoside of ginseng (ginsenoside malonyl-Rg1) detected in plant cell suspension culture of Panax japonicus var. repens. Russ. J. Plant Physiol. 2017, 64, 649–656. [Google Scholar] [CrossRef]
- Yang, X.; Yan, X.; Xue, G.; Cheng, Y.; Li, J.; Du, C.; Zhang, S.; Liu, J. Correlation between agronomic traits and the content of total flavonoids and saponins in Bupleurum chinense. Cent. South Pharm. 2024, 22, 2583–2588. (In Chinese) [Google Scholar]
- Liu, P.; Wu, Y.; Wang, X.; Wu, W.; Gao, Y.; Chen, D.; Si, J.; Li, C. Research progress on plant physiological morphology and light responsemechanism in shaded environments. J. Zhejiang AF Univ. 2024, 41, 1313–1322. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Kuang, S.; Cun, Z.; Wu, H.; Shuang, S.; Chen, J. Constitutive activation of genes involved in triterpene saponins enhances the accumulation of saponins in three-year-old Panax notoginseng growing under moderate light intensity. Ind. Crops Prod. 2021, 171, 113938. [Google Scholar] [CrossRef]
- Di, P.; Sun, Z.; Cheng, L.; Han, M.; Yang, L.; Yang, L. LED Light Irradiations Differentially Affect the Physiological Characteristics, Ginsenoside Content, and Expressions of Ginsenoside Biosynthetic Pathway Genes in Panax ginseng. Agriculture 2023, 13, 807. [Google Scholar] [CrossRef]
- Yang, F.; Lang, T.; Wu, J.; Zhang, C.; Qu, H.; Pu, Z.; Yang, F.; Yu, M.; Feng, J. SNP loci identification and KASP marker development system for genetic diversity, population structure, and fingerprinting in sweetpotato (Ipomoea batatas L.). BMC Genom. 2024, 25, 1245. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.; Jang, W.; Shim, H.; Kim, J.; Oh, Y.; Park, J.; Kim, Y.; Lee, J.; Jo, I.; Lee, M.; et al. High-resolution genetic map and SNP chip for molecular breeding in Panax ginseng, a tetraploid medicinal plant. Hortic. Res. 2024, 11, uhae257. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Yan, L.; Chen, L.; Li, B. Genome-Wide SNP Discovery and Population Genetic Analysis of Mesocentrotus nudus in China Seas. Front. Genet. 2021, 12, 717764. [Google Scholar] [CrossRef]
- Hao, Y.; Kong, F.; Wang, L.; Zhao, Y.; Li, M.; Che, N.; Li, S.; Wang, M.; Hao, M.; Zhang, X.; et al. Genome-wide association study of grain micronutrient concentrations in bread wheat. J. Integr. Agric. 2024, 23, 1468–1480. [Google Scholar] [CrossRef]
- Xu, S.; Tang, X.; Zhang, X.; Wang, H.; Ji, W.; Xu, C.; Yang, Z.; Li, P. Genome-wide association study identifies novel candidate loci or genes affecting stalk strength in maize. Crop J. 2023, 11, 220–227. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Z.; Zhang, Y.; Li, M.; Liao, N.; Dong, J.; Wang, B.; Wu, J.; Wu, X.; Wang, Y.; et al. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat. Genet. 2024, 56, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.; Xu, X.; Meng, Z.; Zhang, G.; Chen, J. Effects of light transmittance on plant growth and root ginsenoside content of Panax notoginseng. Chin. J. Appl. Environ. Biol. 2015, 21, 279–286. [Google Scholar]
Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|
0–22 | 20 | 80 |
22–47 | 20–46 | 80–54 |
47–57 | 46–55 | 54–45 |
57–62 | 55 | 45 |
62–63 | 55–20 | 80 |
63–69 | 20 | 80 |
Ingredients | Linear Equation | R2 | Linear Range (mg/mL) |
---|---|---|---|
Notoginsenoside R1 | Y = 3020.9156X − 6.4233 | 0.9991 | 2.0–9.5 |
Ginsenoside Re | Y = 2769.9734X − 129.9758 | 0.9994 | 2.5–10.0 |
Ginsenoside Rg1 | Y = 1611.47370X − 39.62066 | 0.9993 | 1.5–9.0 |
Ginsenoside Rb1 | Y = 2032.2351X + 6.6927 | 0.9998 | 2.2–10.0 |
Ginsenoside Rd | Y = 2536.9961X + 43.2212 | 0.9992 | 1.8–9.3 |
Variety | Number of Compound Leaves/Piece | Number of Leaflets/Piece | Compound Petiole Length/cm | Leaf Length/cm | Leaf Width/cm | Leaf Area /cm2 | Plant Height/cm | Compound Petiole Angle/Degree | Leaflet Petiole Length/cm | Stem Thickness/mm | Main Root Length/cm | Main Root Diameter/mm | Fresh Weight of Main Root/g | Dry Weight of Main Root/g | Main Root Drying Rate/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. notoginseng (original cultivar) | 4.8 ± 0.79ab | 6.8 ± 1.23a | 10.85 ± 1.25a | 12.44 ± 1.46a | 4.51 ± 0.47ab | 35.75 ± 6.52ab | 42.15 ± 5.28a | 49.00 ± 11.97a | 2.37 ± 0.39a | 7.85 ± 1.37a | 9.40 ± 2.69c | 24.81 ± 5.69b | 30.91 ± 10.57a | 10.78 ± 4.60a | 34.32 ± 4.53a |
P. notoginseng “Zijing” | 5.1 ± 0.74ab | 6.1 ± 0.88a | 10.54 ± 2.15a | 11.06 ± 1.41b | 3.91 ± 0.47b | 27.70 ± 6.45b | 42.50 ± 6.15a | 48.00 ± 16.19a | 2.51 ± 0.43a | 7.86 ± 0.99a | 13.65 ± 4.4ab | 27.91 ± 7.32ab | 30.46 ± 8.51a | 10.72 ± 3.40a | 35.45 ± 6.64a |
P. notoginseng “Dianqi No.1” | 4.5 ± 0.85ab | 7.0 ± 0.82a | 10.79 ± 1.67a | 12.40 ± 0.93a | 4.88 ± 0.58a | 38.46 ± 5.72a | 43.92 ± 6.03a | 54.00 ± 13.29a | 2.36 ± 0.46a | 8.48 ± 1.99a | 11.40 ± 2.92bc | 31.04 ± 8.96ab | 37.06 ± 14.20a | 14.45 ± 5.78a | 39.40 ± 8.09a |
P. notoginseng “Miaoxiang No.1” | 4.6 ± 0.70ab | 6.6 ± 1.07a | 11.98 ± 1.58a | 13.55 ± 1.84a | 4.92 ± 0.94a | 42.95 ± 12.72a | 41.76 ± 5.28a | 51.50 ± 16.51a | 2.62 ± 0.35a | 9.19 ± 1.49a | 14.35 ± 3.06ab | 29.07 ± 10.08ab | 36.27 ± 12.13a | 13.49 ± 5.92a | 36.50 ± 7.65a |
P. notoginseng “Miaoxiang No.2” | 5.2 ± 0.79a | 6.9 ± 0.32a | 12.05 ± 1.50a | 12.25 ± 1.36ab | 4.50 ± 0.82ab | 35.55 ± 10.37ab | 40.80 ± 4.16a | 57.00 ± 12.52a | 2.69 ± 0.84a | 8.00 ± 1.29a | 15.40 ± 3.78a | 28.79 ± 5.97ab | 30.87 ± 14.35a | 11.31 ± 5.99a | 36.50 ± 6.22a |
P. notoginseng “Miaoxiang Kangqi No.1” | 4.4 ± 0.52b | 6.9 ± 1.20a | 11.97 ± 3.19a | 13.33 ± 1.27a | 5.02 ± 0.69a | 42.79 ± 9.20a | 44.01 ± 7.15a | 50.50 ± 14.03a | 2.82 ± 0.67a | 9.25 ± 1.44a | 11.12 ± 3.75bc | 34.99 ± 9.47a | 42.12 ± 20.27a | 15.16 ± 7.79a | 35.60 ± 4.04a |
Characteristics | Number of Compound Leaves | Number of Leaflets | Compound Petiole Length | Leaf Length | Leaf Width | Leaf Area | Plant Height | Compound Petiole Angle | Leaflet Petiole Length | Stem Thickness | Main Root Length | Main Root Diameter | Fresh Weight of Main Root | Dry Weight of Main Root | Main Root Drying Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum value | 5.2 | 7 | 12.05 | 13.55 | 5.02 | 42.95 | 44.01 | 57 | 2.82 | 9.25 | 15.4 | 34.99 | 42.12 | 15.16 | 5.2 |
Minimum value | 4.4 | 6.1 | 10.54 | 11.06 | 3.91 | 27.70 | 40.8 | 48 | 2.36 | 7.85 | 9.4 | 24.81 | 30.46 | 10.72 | 4.4 |
Standard deviation | 0.33 | 0.33 | 0.71 | 0.89 | 0.41 | 5.67 | 1.25 | 3.34 | 0.18 | 0.65 | 2.27 | 3.40 | 4.69 | 1.97 | 0.33 |
average value | 4.77 | 6.72 | 11.36 | 12.51 | 4.62 | 37.20 | 42.52 | 51.67 | 2.56 | 8.44 | 12.55 | 29.44 | 34.62 | 12.65 | 4.77 |
Coefficient of variation/% | 6.85 | 4.93 | 6.21 | 7.10 | 8.91 | 15.25 | 2.95 | 6.47 | 7.13 | 7.68 | 18.12 | 11.54 | 13.55 | 15.54 | 6.85 |
Chromosome | Number of SNPs | Chromosome | Number of SNPs |
---|---|---|---|
1 | 12,986 | 7 | 8022 |
2 | 12,177 | 8 | 10,226 |
3 | 9139 | 9 | 7070 |
4 | 11,294 | 10 | 7292 |
5 | 10,965 | 11 | 8323 |
6 | 9633 | 12 | 8338 |
Variety | Membership Function Value | Ranking |
---|---|---|
P. notoginseng (original cultivar) | 0.264 | 5 |
P. notoginseng “Zijing” | 0.248 | 6 |
P. notoginseng “Dianqi No.1” | 0.612 | 3 |
P. notoginseng “Miaoxiang No.1” | 0.614 | 2 |
P. notoginseng “Miaoxiang No.2” | 0.514 | 4 |
P. notoginseng “Miaoxiang Kangqi No.1” | 0.749 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, G.; Pu, R.; Bai, T.; Fan, H.; Zhang, J.; Yang, S. Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng. Genes 2025, 16, 1185. https://doi.org/10.3390/genes16101185
Wu Y, Wang G, Pu R, Bai T, Fan H, Zhang J, Yang S. Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng. Genes. 2025; 16(10):1185. https://doi.org/10.3390/genes16101185
Chicago/Turabian StyleWu, Yawen, Guanjiao Wang, Ran Pu, Tian Bai, Hao Fan, Jingli Zhang, and Shengchao Yang. 2025. "Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng" Genes 16, no. 10: 1185. https://doi.org/10.3390/genes16101185
APA StyleWu, Y., Wang, G., Pu, R., Bai, T., Fan, H., Zhang, J., & Yang, S. (2025). Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng. Genes, 16(10), 1185. https://doi.org/10.3390/genes16101185