Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tire Internal Drum Test Bench
2.2. Sampling and Measuring
2.3. Varied Parameters
2.4. Experimental Setup and Procedure
2.5. Data Processing and Evaluation
3. Results
3.1. Influence of Longitudinal Forces
3.2. Influence of Lateral Forces
3.3. Influence of Combined Forces
3.4. Influence of Load Conditions on the Particle Size Distribution
3.5. Particle Composition
4. Discussion
4.1. Assumptions for the Calculation of Emission Factors
4.2. Representativeness of the Calculated Emission Factors
4.3. Assumptions for the Determination of Particle Density and Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EF | Emission Factor |
FAST | Institute of Vehicle System Technology |
KIT | Karlsruhe Institute of Technology |
PM | Particulate Matter |
PMC | Particle Mass Concentration |
PNC | Particle Number Concentration |
SEM | Scanning Electron Microscope |
SRT | Skid Resistance Tester |
TRWP | Tire and Road Wear Particles |
References
- European Commission. Regulation of the European Parliament and of the Council: On Type-Approval of Motor Vehicles and Engines and of Systems, Components and Separate Technical Units Intended for Such Vehicles, with Respect to Their Emissions and Battery Durability (Euro 7) and Repealing Regulations (EC) No 715/2007 and (EC) No 595/2009; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Timmers, V.R.J.H.; Achten, P.A.J. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Luhana, L.; Sokhi, R.; Warner, L.; Mao, H.; Boulter, P.; McCrae, I.; Wright, J.; Osborn, D. Measurement of Non-Exhaust Particulate Matter: PARTICULATES—Characterisation of Exhaust Particulate Emissions from Road Vehicles; European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Sjödin, Å.; Ferm, M.; Björk, A.; Rahmberg, M.; Gudmundsson, A.; Swietlicki, E.; Johansson, C.; Gustafsson, M.; Blomqvist, G. Wear Particles from Road Traffic: A Field, Laboratory and Modelling Study: Final Report; IVL Swedish Environmental Research Institute Ltd.: Göteborg, Sweden, 2010. [Google Scholar]
- Amato, F.; Schaap, M.; van der Denier Gon, H.A.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X. Effect of rain events on the mobility of road dust load in two Dutch and Spanish roads. Atmos. Environ. 2012, 62, 352–358. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.; Liacos, J.W.; Schauer, J.J.; Delfino, R.J.; Sioutas, C. Size-segregated composition of particulate matter (PM) in major roadways and surface streets. Atmos. Environ. 2012, 55, 90–97. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; Contreras González, J.; Querol, X. Impact of traffic intensity and pavement aggregate size on road dust particles loading. Atmos. Environ. 2013, 77, 711–717. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Lawrence, S.; Sokhi, R.; Ravindra, K. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques. Environ. Pollut. 2016, 210, 419–428. [Google Scholar] [CrossRef]
- Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M. Vehicle-based road dust emission measurement (III): Effect of speed, traffic volume, location, and season on PM10 road dust emissions in the Treasure Valley, ID. Atmos. Environ. 2003, 37, 4583–4593. [Google Scholar] [CrossRef]
- Hussein, T.; Johansson, C.; Karlsson, H.; Hansson, H.C. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden. Atmos. Environ. 2008, 42, 688–702. [Google Scholar] [CrossRef]
- Mathissen, M.; Scheer, V.; Vogt, R.; Benter, T. Investigation on the potential generation of ultrafine particles from the tire–road interface. Atmos. Environ. 2011, 45, 6172–6179. [Google Scholar] [CrossRef]
- Kupiainen, K.J.; Pirjola, L. Vehicle non-exhaust emissions from the tyre–road interface—Effect of stud properties, traction sanding and resuspension. Atmos. Environ. 2011, 45, 4141–4146. [Google Scholar] [CrossRef]
- Mathissen, M.; Scheer, V.; Kirchner, U.; Vogt, R.; Benter, T. Non-exhaust PM emission measurements of a light duty vehicle with a mobile trailer. Atmos. Environ. 2012, 59, 232–242. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, S.; Lee, S. On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions. Atmos. Environ. 2014, 97, 195–205. [Google Scholar] [CrossRef]
- Aatmeeyata; Kaul, D.S.; Sharma, M. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars. Atmos. Environ. 2009, 43, 5691–5697. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S. Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environ. Sci. Technol. 2018, 52, 12153–12161. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.; Lee, S. Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions. J. Aerosol Sci. 2018, 124, 30–40. [Google Scholar] [CrossRef]
- Foitzik, M.J.; Unrau, H.J.; Gauterin, F.; Dornhöfer, J.; Koch, T. Investigation of Ultra Fine Particulate Matter Emission of Rubber Tires. Wear 2018, 394–395, 87–95. [Google Scholar] [CrossRef]
- Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environ. Sci. Technol. 2005, 39, 699–706. [Google Scholar] [CrossRef]
- Dahl, A.; Gharibi, A.; Swietlicki, E.; Gudmundsson, A.; Bohgard, M.; Ljungman, A.; Blomqvist, G.; Gustafsson, M. Traffic-generated emissions of ultrafine particles from pavement–tire interface. Atmos. Environ. 2006, 40, 1314–1323. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Swietlicki, E.; Bohgard, M.; Lindbom, J.; Ljungman, A. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Sci. Total. Environ. 2008, 393, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors influencing PM10 emissions from road pavement wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Panko, J.; McAtee, B.L.; Kreider, M.; Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Sweet, L.; Finley, B. Physio-Chemical Analysis of Airborne Tire Wear Particles. In Proceedings of the 46th Congress of the European Societies of Toxicology, Dresden, Germany, 13–16 September 2009. [Google Scholar]
- Schläfle, S.; Gauterin, F.; Lallement, R. Aufbau eines Prüfstands zur Messung von Reifen-Fahrbahn-Feinstaubemissionen auf realen Fahrbahnoberflächen. In Proceedings of the Reifen—Fahrwerk—Fahrbahn; VDI Wissensforum GmbH, Ed.; VDI Verlag: Düsseldorf, Germany, 2022; VDI-Berichte 2398; pp. 15–33. [Google Scholar] [CrossRef]
- Schläfle, S.; Unrau, H.J.; Gauterin, F. Influence of Load Condition, Tire Type, and Ambient Temperature on the Emission of Tire–Road Particulate Matter. Atmosphere 2023, 14, 1095. [Google Scholar] [CrossRef]
- ISO 9096:2017; Stationary Source Emissions—Manual Determination of Mass Concentration of Particulate Matter. International Organization for Standardization: Geneva, Switzerland, 2017.
- PALAS. Datasheet Promo 2000. Available online: https://www.palas.de/en/product/download/promo2000/datasheet/pdf (accessed on 13 June 2022).
- PALAS. Datasheet Aerosol Sensor Welas 2500. Available online: https://www.palas.de/en/product/download/aerosolsensorwelas2500/datasheet/pdf (accessed on 13 June 2022).
- EN 13036; Road and Airfield Surface Characteristics—Test Methods–Part 4: Method for Measurement of Slip/Skid Resistance of a Surface—The Pendulum Test. European Committee for Standardization: Berlin, Germany, 2011.
- Jansen, D.; Pöppel-Decker, M. Griffigkeitsprognose an Offenporigen Asphalten—Teil 2: Neue Baumaßnahmen; Heft S 72, Bundesanstalt für Straßenwesen, Wirtschaftsverl; NW Verl. für neue Wiss: Bergisch Gladbach, Germany, 2011. [Google Scholar]
- Forschungsgesellschaft für Straßen- und Verkehrswesen. Zusätzliche technische Vertragsbedingungen und Richtlinien für den Bau von Verkehrsflächenbefestigungen aus Asphalt: ZTV Asphalt-StB 07; FGSV: Cologne, Germany, 2013. [Google Scholar]
- Kayhanian, M.; McKenzie, E.R.; Leatherbarrow, J.E.; Young, T.M. Characteristics of road sediment fractionated particles captured from paved surfaces, surface run-off and detention basins. Sci. Total. Environ. 2012, 439, 172–186. [Google Scholar] [CrossRef]
- Kovochich, M.; Liong, M.; Parker, J.A.; Oh, S.C.; Lee, J.P.; Xi, L.; Kreider, M.L.; Unice, K.M. Chemical mapping of tire and road wear particles for single particle analysis. Sci. Total. Environ. 2021, 757, 144085. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total. Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1999. [Google Scholar]
- Williams, R.L.; Cadle, S.H. Characterization of Tire Emissions Using an Indoor Test Facility. Rubber Chem. Technol. 1978, 51, 7–25. [Google Scholar] [CrossRef]
- Rauterberg-Wulff, A. Beitrag des Reifen- und Bremsenabriebs zur Rußemission an Straßen; Fortschritt-Berichte VDI: Reihe 15, Umwelttechnik; VDI-Verlag: Düsseldorf, Germany, 1998. [Google Scholar]
Parameter | Parameter Values | |
---|---|---|
Varied | Longitudinal force Lateral force | 0 kN; ±1 kN; ±2 kN; ±3 kN; ±4 kN |
Constant | Vertical load | kN |
Speed v | 80 km/h | |
Inflation pressure | bar | |
Camber angle | 0° | |
Ambient temperature | 25 °C |
in kN | in kN | in mg/vkm | in % |
---|---|---|---|
3 | 1/−1 | −18.98 | −5.66 |
2 | 1/−1 | 0.22 | 0.07 |
1 | 2/−2 | 3.72 | 1.11 |
1 | 3/−3 | 12.11 | 3.61 |
−1 | 3/−3 | 10.29 | 3.05 |
−1 | 2/−2 | 6.77 | 2.02 |
−2 | 1/−1 | 10.29 | 3.07 |
−3 | 1/−1 | −18.69 | −5.57 |
Size Fraction | Size Range | Mass Fraction M in % | Density in g/cm3 |
---|---|---|---|
Total fraction | dp < 40 μm | 100.00 | 2.225 |
Coarse fraction | 20 μm < dp < 40 μm | 89.01 | 2.216 |
Fine fraction | dp < 20 μm | 10.99 | 2.299 |
Material | Density in g/cm3 | Mass Fraction M in % | Volume Fraction V in % |
---|---|---|---|
Tire tread | 1.206 | 18.2 | 32.0 |
Road material | 2.543 | 81.8 | 68.0 |
Aggregate | 2.622 | 77.7 | 60.0 |
Bitumen | 1.035 | 4.1 | 8.0 |
PM (TRWP) | 2.299 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schläfle, S.; Unrau, H.-J.; Gauterin, F. Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution. Atmosphere 2023, 14, 1780. https://doi.org/10.3390/atmos14121780
Schläfle S, Unrau H-J, Gauterin F. Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution. Atmosphere. 2023; 14(12):1780. https://doi.org/10.3390/atmos14121780
Chicago/Turabian StyleSchläfle, Stefan, Hans-Joachim Unrau, and Frank Gauterin. 2023. "Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution" Atmosphere 14, no. 12: 1780. https://doi.org/10.3390/atmos14121780