Precipitation Extremes over India in a Coupled Land–Atmosphere Regional Climate Model: Influence of the Land Surface Model and Domain Extent
Abstract
:1. Introduction
2. Model and Methodology
2.1. Model Setup and Experimental Design
2.2. Study Areas (Model Domains)
2.3. Extreme Precipitation Indices
3. Results
3.1. Comparative Evaluation for Precipitation Extremes
3.2. Physical Mechanism Associated with Extreme Precipitation in Different Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnamurthy, C.K.B.; Lall, U.; Kwon, H.H. Changing Frequency and Intensity of Rainfall Extremes over India from 1951 to 2003. J. Clim. 2009, 22, 4737–4746. [Google Scholar] [CrossRef]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, L18707. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Ndehedehe, C.E.; Farah, H.; Ahmad, B.; Wong, Y.; Adeyeri, O.E. Application of a Conceptual Hydrological Model for Streamflow Prediction Using Multi-Source Precipitation Products in a Semi-Arid River Basin. Water 2022, 14, 1260. [Google Scholar] [CrossRef]
- Maneechot, L.; Wong, Y.J.; Try, S.; Shimizu, Y.; Bharambe, K.P.; Hanittinan, P.; Ram-Indra, T.; Usman, M. Evaluating the necessity of post-processing techniques on d4PDF data for extreme climate assessment. Environ. Sci. Pollut. Res. 2023, 30, 102531–102546. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, V. Impact of monsoon rainfall on the total foodgrain yield over India. J. Earth Syst. Sci. 2014, 123, 1129–1145. [Google Scholar] [CrossRef]
- Mishra, A.K.; Dwivedi, S.; Das, S. Role of Arabian Sea warming on the Indian summer monsoon rainfall in a regional climate model. Int. J. Climatol. 2020, 40, 2226–2238. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 708. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Masson, S. The Curious Case of Indian Ocean Warming. J. Clim. 2014, 27, 8501–8509. [Google Scholar] [CrossRef]
- Roxy, R.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 791–802. [Google Scholar]
- Singh, R.; AchutaRao, K. Role of Internal Variability in Surface Temperature and Precipitation Change Uncertainties over India IIT Delhi. In Proceedings of the AGU FALL Meet, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar] [CrossRef]
- Panjwani, S.; Naresh Kumar, S.; Ahuja, L.; Islam, A.; Panjwani, S.; Naresh Kumar, S.; Ahuja, L.; Islam, A. Evaluation of selected global climate models for extreme temperature events over India. Theor. Appl. Climatol. 2020, 140, 731–738. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Fowler, H.J.; Blenkinsop, S.; Ferro, C.A.T.; Stephenson, D.B. Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim. Dyn. 2013, 41, 1475–1495. [Google Scholar] [CrossRef]
- Kripalani, R.H.; Oh, J.H.; Kulkarni, A.; Sabade, S.S.; Chaudhari, H.S. South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol. 2007, 90, 133–159. [Google Scholar] [CrossRef]
- Mishra, A.K.; Dubey, A.K.; Dinesh, A.S. Diagnosing whether the increasing horizontal resolution of regional climate model inevitably capable of adding value: Investigation for Indian summer monsoon. Clim. Dyn. 2023, 60, 1925–1945. [Google Scholar] [CrossRef]
- Mishra, A.K.; Jangir, B.; Strobach, E. Does increasing climate model horizontal resolution be beneficial for the Mediterranean region?: Multimodel evaluation framework for High-Resolution Model Intercomparison Project. J. Geophys. Res. Atmos. 2023, 128, e2022JD037812. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.; Cha, D.H. Added value of high-resolution regional climate model in simulating precipitation based on the changes in kinetic energy. Geosci. Lett. 2022, 9, 38. [Google Scholar] [CrossRef]
- Devanand, A.; Ghosh, S.; Paul, S.; Karmakar, S.; Niyogi, D. Multi-ensemble regional simulation of Indian monsoon during contrasting rainfall years: Role of convective schemes and nested domain. Clim. Dyn. 2018, 50, 4127–4147. [Google Scholar] [CrossRef]
- Halenka, T.; Kalvová, J.; Chládová, Z.; Demeterová, A.; Zemánková, K.; Belda, M. On the capability of RegCM to capture extremes in long term regional climate simulation-comparison with the observations for Czech Republic. Theor. Appl. Clim. 2006, 86, 125–145. [Google Scholar] [CrossRef]
- Herrera, S.; Fita, L.; Fernández, J.; Gutiérrez, J.M. Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res. Atmos. 2010, 115, 21117. [Google Scholar] [CrossRef]
- Karmacharya, J.; Jones, R.; Moufouma-Okia, W.; New, M. Evaluation of the added value of a high-resolution regional climate model simulation of the South Asian summer monsoon climatology. Int. J. Climatol. 2017, 37, 3630–3643. [Google Scholar] [CrossRef]
- Karmacharya, J.; New, M.; Jones, R.; Levine, R. Added value of a high-resolution regional climate model in simulation of intraseasonal variability of the South Asian summer monsoon. Int. J. Climatol. 2017, 37, 1100–1116. [Google Scholar] [CrossRef]
- Maity, S.; Satyanarayana, A.N.V.; Mandal, M.; Nayak, S. Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model. Atmos. Res. 2017, 197, 21–41. [Google Scholar] [CrossRef]
- Wang, Y.; Sen, O.L.; Wang, B. A Highly Resolved Regional Climate Model (IPRC-RegCM) and Its Simulation of the 1998 Severe Precipitation Event over China. Part I: Model Description and Verification of Simulation. J. Clim. 2003, 16, 1721–1738. [Google Scholar] [CrossRef]
- Steiner, A.L.; Pal, J.S.; Rauscher, S.A.; Bell, J.L.; Diffenbaugh, N.S.; Boone, A.; Sloan, L.C.; Giorgi, F. Land surface coupling in regional climate simulations of the West African monsoon. Clim. Dyn. 2009, 33, 869–892. [Google Scholar] [CrossRef]
- Mishra, A.K.; Dubey, A.K. Sensitivity of convective parameterization schemes in regional climate model: Precipitation extremes over India. Theor. Appl. Climatol. 2021, 146, 293–309. [Google Scholar] [CrossRef]
- Dash, S.K.; Pattnayak, K.C.; Panda, S.K.; Vaddi, D.; Mamgain, A. Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2: Impact of domain size on ISM simulations. Clim. Dyn. 2014, 44, 961–975. [Google Scholar] [CrossRef]
- Halder, S.; Dirmeyer, P.A.; Saha, S.K. Sensitivity of the mean and variability of Indian summer monsoon to land surface schemes in RegCM4: Understanding coupled land-atmosphere feedbacks. J. Geophys. Res. Atmos. 2015, 120, 9437–9458. [Google Scholar] [CrossRef]
- Maurya, R.K.S.; Sinha, P.; Mohanty, M.R.; Mohanty, U.C. RegCM4 model sensitivity to horizontal resolution and domain size in simulating the Indian summer monsoon. Atmos. Res. 2018, 210, 15–33. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhatla, R.; Mall, R.K.; Srivastava, P.K.; Sahai, A.K. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions. Theor. Appl. Climatol. 2019, 135, 1559–1581. [Google Scholar] [CrossRef]
- Mishra, A.K.; Dwivedi, S. Assessment of convective parametrization schemes over the Indian subcontinent using a regional climate model. Theor. Appl. Climatol. 2019, 137, 1747–1764. [Google Scholar] [CrossRef]
- Ajay, P.; Pathak, B.; Solmon, F.; Bhuyan, P.K.; Giorgi, F. Obtaining best parameterization scheme of RegCM 4.4 for aerosols and chemistry simulations over the CORDEX South Asia. Clim. Dyn. 2019, 53, 329–352. [Google Scholar] [CrossRef]
- Maurya, R.K.S.; Sinha, P.; Mohanty, M.R.; Mohanty, U.C. Coupling of community land model with RegCM4 for Indian summer monsoon simulation. Pure Appl. Geophys. 2017, 174, 4251–4270. [Google Scholar] [CrossRef]
- Dash, S.K.; Mishra, S.K.; Pattnayak, K.C.; Mamgain, A.; Mariotti, L.; Coppola, E.; Giorgi, F.; Giuliani, G.; Dash, S.K.; Mishra, S.K.; et al. Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theor. Appl. Climatol. 2015, 122, 581–593. [Google Scholar] [CrossRef]
- Jones, R.G.; Murphy, J.M.; Noguer, M. Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Q. J. R. Meteorol. Soc. 1995, 121, 1413–1449. [Google Scholar]
- Seth, A.; Giorgi, F. The Effects of Domain Choice on Summer Precipitation Simulation and Sensitivity in a Regional Climate. J. Clim. 1998, 11, 2698–2712. Available online: https://journals.ametsoc.org/view/journals/clim/11/10/1520-0442_1998_011_2698_teodco_2.0.co_2.xml (accessed on 15 July 2022). [CrossRef]
- Elguindi, N.; Bi, X.; Giorgi, F.; Nagarajan, B.; Pal, J.; Solmon, F.; Rauscher, S.; Zakey, A.; O’Brien, T.; Nogherotto, R.; et al. Regional Climate Model RegCM Reference Manual; ITCP: Trieste, Italy, 2014. [Google Scholar]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J. Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. In NCAR Technical Note NCAR/TN-387+STR; National Center for Atmospheric Research: Boulder, CO, USA, 1993; p. 72. [Google Scholar] [CrossRef]
- Oleson, K.W.; Lead, D.M.L.; Bonan, G.B.; Drewniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.; Riley, W.J.; Subin, Z.M.; et al. Technical description of version 4.5 of the Community Land Model (CLM). NCAR 2013, 257, 1–257. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved In Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. Available online: https://journals.ametsoc.org/view/journals/clim/15/13/1520-0442_2002_015_1609_aiisas_2.0.co_2.xml (accessed on 15 July 2022). [CrossRef]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing Climate Information Needs at the Regional Level: The CORDEX Framework. World Meteorol. Organ. (WMO) Bull. 2009, 58, 175. Available online: https://public.wmo.int/en/bulletin/addressing-climate-information-needs-regional-level-cordex-framework (accessed on 15 July 2022).
- Kumari, A.; Kumar, P.; Dubey, A.K.; Mishra, A.K.; Saharwardi, M.S. Dynamical and thermodynamical aspects of precipitation events over India. Int. J. Climatol. 2022, 42, 3094–3106. [Google Scholar] [CrossRef]
- Singh, S.; Mall, R.K.; Singh, N. Changing spatio-temporal trends of heat wave and severe heat wave events over India: An emerging health hazard. Int. J. Climatol. 2021, 41, E1831–E1845. [Google Scholar] [CrossRef]
- Torma, C.; Giorgi, F.; Coppola, E. Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J. Geophys. Res. Atmos. 2015, 120, 3957–3972. [Google Scholar] [CrossRef]
- Shahi, N.K.; Das, S.; Ghosh, S.; Maharana, P.; Rai, S. Projected changes in the mean and intra-seasonal variability of the Indian summer monsoon in the RegCM CORDEX-CORE simulations under higher warming conditions. Clim. Dyn. 2021, 57, 1489–1506. [Google Scholar] [CrossRef]
- Bhate, J.; Kesarkar, A.; Rajasree, V.P.M. Simulation of the diurnal cycle of rainfall during Indian summer monsoon season using mesoscale model. Theor. Appl. Climatol. 2019, 138, 185–200. [Google Scholar] [CrossRef]
- Fildier, B.; Parishani, H.; Collins, W.D. Simultaneous characterization of mesoscale and convective-scale tropical rainfall extremes and their dynamical and thermodynamic modes of change. J. Adv. Model. Earth Syst. 2017, 9, 2103–2119. [Google Scholar] [CrossRef]
- Flynn, W.J.; Nesbitt, S.W.; Anders, A.M.; Garg, P. Mesoscale precipitation characteristics near the Western Ghats during the Indian Summer Monsoon as simulated by a high-resolution regional model. Q. J. R. Meteorol. Soc. 2017, 143, 3070–3084. [Google Scholar] [CrossRef]
- Roca, R.; Fiolleau, T. Extreme precipitation in the tropics is closely associated with long-lived convective systems. Commun. Earth Environ. 2020, 1, 18. [Google Scholar] [CrossRef]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sahany, S.; Salunke, P.; Kang, I.S.; Jain, S. Fidelity of CMIP5 multi-model mean in assessing Indian monsoon simulations. NPJ Clim. Atmos. Sci. 2018, 1, 39. [Google Scholar] [CrossRef]
- Tiwari, P.R.; Kar, S.C.; Mohanty, U.C.; Dey, S.; Sinha, P.; Raju, P.V.; Shekhar, M.S. The role of land surface schemes in the regional climate model (RegCM) for seasonal scale simulations over Western Himalaya. Atmósfera 2015, 28, 129–142. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Qian, Y.F.; Miao, M.Q.; Yu, G.; Kong, Y.; Zhang, D. The effects of vegetation change on regional climate I: Simulation results. Acta Meteorol. Sin. 2002, 60, 1–16. [Google Scholar]
Land surface model | BATS | CLM4.5 | ||
Domain | SACD | IND | SACD | IND |
Experiment name | BATSSA | BATSIND | CLMSA | CLMIND |
Soil temperatures calculation | Uses a two-layer force–restore model | Soil temperature is calculated explicitly by a 10-layer soil model | ||
Surface representation | One vegetation layer, a surface soil layer, a snow layer | One vegetation layer with a canopy photosynthesize conductance model, 10 unevenly spaced soil layers, five snow layers with an additional representation of trace snow | ||
Treatment of heat and roughness length | Heat and water vapor roughness lengths are constant | Updates these values over bare soil and snow with values from the stability functions | ||
Albedo treatment | Uses prescribed values for vegetation albedo for both short- and longwave components | Uses a modified two-stream approach that reduces the complexity of a full two-stream albedo treatment | ||
Treatment of heat and roughness length | Heat and water vapor roughness lengths are constant | Updates these values over bare soil and snow with values from the stability functions | ||
Land cover/vegetation classes | 20 | 24 | ||
Treatment of vegetation canopy | Treats all vegetation within the canopy in the same manner | The canopy is divided into sunlit and shaded fractions as a function of LAI | ||
Calculation of stomatal conductance and photosynthesis rate | No individual calculation is made for sunlit and shaded fractions. It does not compute photosynthetic rates | Stomatal conductance is calculated for sunlit and shaded fractions. Calculation of photosynthetic rates is made in this scheme | ||
Cumulus parameterization | MIT over land and Tiedke over the ocean | |||
PBL parameterization | UW PBL scheme | |||
Radiation parameterization | CCM3 | |||
Horizontal resolution | 50 km | |||
Vertical layer | 23 having terrain-following Sigma coordinate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.K.; Dinesh, A.S.; Kumari, A.; Pandey, L.K. Precipitation Extremes over India in a Coupled Land–Atmosphere Regional Climate Model: Influence of the Land Surface Model and Domain Extent. Atmosphere 2024, 15, 44. https://doi.org/10.3390/atmos15010044
Mishra AK, Dinesh AS, Kumari A, Pandey LK. Precipitation Extremes over India in a Coupled Land–Atmosphere Regional Climate Model: Influence of the Land Surface Model and Domain Extent. Atmosphere. 2024; 15(1):44. https://doi.org/10.3390/atmos15010044
Chicago/Turabian StyleMishra, Alok Kumar, Anand Singh Dinesh, Amita Kumari, and Lokesh Kumar Pandey. 2024. "Precipitation Extremes over India in a Coupled Land–Atmosphere Regional Climate Model: Influence of the Land Surface Model and Domain Extent" Atmosphere 15, no. 1: 44. https://doi.org/10.3390/atmos15010044