Dust Detection and Optical Depth Retrieval Using MSG‑SEVIRI Data
Abstract
:1. Introduction
2. Algorithm Description
2.1. Data Set
2.2. Dust Aerosol Detection
- Thresh1_T10.8 < T10.8 < Thresh2_T10.8
- T10.8 − T12.0 < Thresh_∆T10.8,12.0
- T10.8 − T8.7 > Thresh_∆T10.8,8.7
- Thin dust (corresponding to AOD ≤ 0.4)
- Medium dense dust (0.4 < AOD < 0.6)
- Dense dust (0.6 ≤ AOD)
Barcellona (41.38N, 2.11E) | Messina (38.19N, 15.56E) | Archacon (44.66N, 1.16W) |
Palencia (41.99N, 4.51W) | Modena (44.63N, 10.94E) | Autilla (41.99N, 4.60W) |
Ispra (45.80N, 8.62E) | Munich_University (48.14N, 11.57E) | Caceres (39.48N, 6.34W) |
IMAA_Potenza (40.60N, 15.72E) | Oukaimedena (31.21N, 7.88W) | - |
Lecce_University (40.33N, 18.11E) | Tamanrasset_INM (22.79N, 5.53E) | - |
Cabo_de_Roca (38.78N, 9.50W) | Venise (45.31N, 12.50E) | - |
Rome_Tor_Vergata (41.84N, 12.64E) | Villefranche (43.68N, 7.33E) | - |
Malaga (36.71N, 4.48W) | Evora (38.56N, 7.91W) | - |
MODIS Linear Lat/Lon | Dates (yyyy-dd-yy) and Times (hh:mm) in GMT | |
---|---|---|
Lat (28.154, 49.351) | Lon (−10.834, 20.755) | 2007-01-15 11:55 |
Lat (4.368, 25.158) | Lon (−25.622, −0.644) | 2007-03-15 11:35 |
Lat (29.868, 51.123) | Lon (1.798, 34.261) | 2007-03-15 13:15 |
Lat (31.531, 52.845) | Lon (−5.718, 27.707) | 2007-05-15 11:05 |
Lat (30.583, 51.813) | Lon (−0.943, 31.962) | 2007-07-15 12:15 |
Lat (23.560, 44.582) | Lon (7.959, 37.535) | 2007-09-15 12:25 |
Lat (27.459, 49.589) | Lon (−19.017, 12.252) | 2010-01-03 10:40 |
Lat (27.558, 48.681) | Lon (13.455, 44.761) | 2010-01-04 10:40 |
Lat (36.453, 57.922) | Lon (−10.170, 26.637) | 2010-01-11 09:50 |
Lat (28.468, 49.619) | Lon (−7.263, 24.492) | 2011-01-01 10:20 |
MODIS Linear Lat/Lon | Dates (yyyy-dd-yy) and Times (hh:mm) in GMT | |
---|---|---|
Lat (34.557, 55.989) | Lon (−13.075, 22.312) | 2007-11-15 11:55 |
Lat (32.405, 53.747) | Lon (0.562, 34.527) | 2007-11-15 13:35 |
Lat (30.248, 51.508) | Lon (14.182, 46.879) | 2008-04-28 12:15 |
Lat (26.356, 47.497) | Lon (−11.079, 19.652) | 2008-04-30 12:00 |
Lat (33.597, 54.940) | Lon (−3.117, 31.613) | 2010-02-20 10:40 |
Lat (37.418, 58.942) | Lon (−31.149, 6.459) | 2010-02-25 12:40 |
Lat (35.792.57.326) | Lon (−9.695, 26.707) | 2010-03-08 12:25 |
Lat (26.561, 47.667) | Lon (0.155, 31.016) | 2010-03-19 14:20 |
Lat (18.685, 39.600) | Lon (24.336, 52.252) | 2010-04-05 11:00 |
Lat (27.838, 48.974) | Lon (−9.931, 21.512) | 2010-04-05 11:10 |
Lat (40.315, 61.999) | Lon (−15.589, 24.613) | 2010-04-05 12:40 |
Lat (32.236, 53.523) | Lon (−37.623, −3.768) | 2011-09-01 10:50 |
Lat (3.735, 24.455) | Lon (23.919, 48.813) | 2011-09-02 09:55 |
Lat (38.739, 60.412) | Lon (4.584, 43.360) | 2011-09-03 09:00 |
Lat (7.716, 28.472) | Lon (−2.116, 23.318) | 2011-09-03 10:40 |
Over Land (%) | Over Sea (%) | |
---|---|---|
Thin-dust contaminated hits | 50.7 | 80.3 |
Standard deviation | 16.0 | 3.7 |
Medium dense-dust contaminated hits | 74.0 | 81.4 |
Standard deviation | 7.5 | 3.0 |
Dense-dust contaminated hits | 79.2 | 83.5 |
Standard deviation | 7.2 | 3.0 |
2.3. Albedo and Emissivity Values
2.4. Optical Depth Estimation
3. Results
4. Conclusions
Acknowledgments
References
- Sokolik, I.; Toon, O.; Bergstrom, R. Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths. J. Geophys. Res. 1998, 103, 8813–8826. [Google Scholar] [CrossRef]
- Mahowald, N.; Zender, C.; Luo, C.; Savoie, D.; Torres, O.; del Corral, J. Understanding the 30-year Barbados desert dust record. J. Geophys. Res. 2002, 107, 4561. [Google Scholar] [CrossRef]
- McConnell, C.L.; Highwood, E.J.; Coe, H.; Formenti, P.; Anderson, B.; Osborne, S.; Nava, S.; Desboeufs, K.; Chen, G.; Harrison, M.A.J. Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys Res. 2008, 113, D14S05. [Google Scholar] [CrossRef]
- Weinzierl, B.; Petzold, A.; Esselborn, M.; Wirth, M.; Rasp, K.; Kandler, K.; Schutz, L.; Koepke, P.; Fiebig, M. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus B 2009, 61, 96–117. [Google Scholar] [CrossRef]
- Weinzierl, B.; Sauer, D.; Esselborn, M.; Petzold, A.; Veira, A.; Rose, M.; Mund, S.; Wirth, M.; Ansmann, A.; Tesche, M.; et al. Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region—An overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus B 2011, 63, 589–618. [Google Scholar] [CrossRef]
- Papayannis, A.; Amiridis, V.; Mona, L.; Tsaknakis, G.; Balis, D.; Bösenberg, J.; Chaikovski, A.; de Tomasi, F.; Grigorov, I.; Mattis, I.; et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002). J. Geophys. Res. 2007, 113, D10204. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Reviron. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Rudich, Y.; Lahav, R. Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 2001 98, 5975–5980.
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1229. [Google Scholar]
- Matsuki, A.; Schwarzenboeck, A.; Venzac, H.; Laj, P.; Crumeyrolle, S.; Gomes, L. Cloud processing of mineral dust: Direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer. Atmos. Chem. Phys. 2006, 10, 1057–1069. [Google Scholar]
- Carboni, E. GOME aerosol optical depth retrieval over ocean: Correcting for the effect of residual clouds contamination. Atmos. Environ. 2006, 40, 6975–6987. [Google Scholar] [CrossRef]
- Santer, R.; Carrere, V.; Dubuisson, P.; Roger, J.C. Atmospheric corrections over land for MERIS. Int. J. Remote Sens. 1999, 20, 1819–1840. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Grey, W.M.F.; North, P.R.J.; Los, S.O.; Mitchell, R.M. Aerosol optical depth and land surface reflectance from multi-angle AATSR measurements: Global validation and inter-sensor comparisons. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2184–2197. [Google Scholar] [CrossRef]
- Veihelmann, B.; Levelt, P.F.; Stammes, P.; Veefkind, J.P. Simulation study of the aerosol information content in OMI spectral reflectance measurements. Atmos. Chem. Phys. 2007, 7, 3115–3127. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Breon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; Tanre, D. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. 2001, 106, 4913–4926. [Google Scholar] [CrossRef]
- Banks, J.R.; Brindley, H.E. Evaluation of MSG-SEVIRI mineral dust retrieval products over Africa and the Middle East. Remote Sens. Environ. 2012, 128, 58–73. [Google Scholar] [CrossRef]
- Popp, C.; Hauser, A.; Foppa, N.; Wunderle, S. Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI data and accuracy assessment with ground-based AERONET measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Govaerts, Y.M.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; de Leeuw, G.; Holzer-Popp, T.; Guang, J.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C.; et al. Retrieval of aerosol optical depth over land based on a time series technique using MSG/SERIVI data. Atmos. Chem. Phys. Discuss. 2012, 12, 4031–4071. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Pierangelo, C.; Chedin, A.; Heilliette, S.; Jacquinet-Husson, N.; Armante, R. Dust altitude and infrared optical depth from AIRS. Atmos. Chem. Phys. 2004, 4, 1813–1822. [Google Scholar] [CrossRef]
- DeSouza-Machado, S.G.; Strow, L.L.; Hannon, S.E.; Motteler, H.E. Infrared dust spectral signatures from AIRS. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Geraldi, E.; Romano, F.; Ricciardelli, E. An advanced model for the estimation of the surface solar irradiance under all atmospheric conditions using MSG/SEVIRI data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2934–2953. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Romano, F.; Cuomo, V. Physical and statistical approaches for cloud identification using Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Data. Remote Sens. Environ. 2008, 112, 2741–2760. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Koepke, P.; Hess, M.; Schult, I. Global Aerosol Data Set; Report No. 243; Max-Planck-Institut für Meteorologie: Hamburg, Germany, 1997. [Google Scholar]
- D’Almeida, G.A.; Koepke, P.; Shettle, E.P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics; A. Deepak Publishing: Hampton, VA, USA, 1991. [Google Scholar]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Bennouna, Y.S.; de Leeuw, G. Aerosol Retrieval over Land and Sea Surfaces Using Combined Satellite Measurements from MSG-SEVIRI and ENVISAT-AATSR. In Proceeding ofEnvisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007.
- Legrand, M.; Nertrand, J.J.; Desbois, M.; Menenger, L.; Fouquard, Y. The potential of infrared satellite data for the retrieval of Saharan dust optical depth over Africa. J. Clim. Appl. Meteorol. 1989, 28, 309–318. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Schmit, T.J.; Schmetz, J.; Menzel, W.P. Quantitative monitoring of a Saharan dust event with SEVIRI on Meteosat-8. Int. J. Remote Sens. 2008, 28, 2181–2186. [Google Scholar]
- Strahler, A.H.; Muller, J.P. MODIS Science Team Members,MODIS BRDF/Albedo Product: Algorithm Theorical Basis Documents Ver. 5.0. Available online: http://modis-sr.ltdri.org/publications/MODIS_BRDF.pdf (accessed on 31 October 2012).
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, E.; Hoefen, T.; Kokaly, R.; Sutley, S.J. USGS Digital Spectral Library splib06a; Digital Data Series 231; US Geological Survey, 2007. Available online: http://speclab.cr.usgs.gov/spectral.lib06 (accessed on 31 October 2012).
- Zhu, L.; Martins, J.V.; Yu, H. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing. Atmos. Meas. Tech. 2012, 5, 3055–3067. [Google Scholar] [CrossRef]
- Wan, Z. MODIS Land Surface Temperature Products Users’ Guide. 2009. Available online: http://www.icess.ucsb.edu/modis/LstUsrGuide/usrguide.html (accessed on 31 October 2012).
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.-L. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Santese, M.; Perrone, M.R.; Zakey, A.S.; de Tomasi, F.; Giorgi, F. Modeling of Saharan dust outbreaks over the Mediterranean by RegCM3: Case studies. Atmos. Chem. Phys. 2010, 10, 133–156. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Romano, F.; Ricciardelli, E.; Cimini, D.; Di Paola, F.; Viggiano, M. Dust Detection and Optical Depth Retrieval Using MSG‑SEVIRI Data. Atmosphere 2013, 4, 35-47. https://doi.org/10.3390/atmos4010035
Romano F, Ricciardelli E, Cimini D, Di Paola F, Viggiano M. Dust Detection and Optical Depth Retrieval Using MSG‑SEVIRI Data. Atmosphere. 2013; 4(1):35-47. https://doi.org/10.3390/atmos4010035
Chicago/Turabian StyleRomano, Filomena, Elisabetta Ricciardelli, Domenico Cimini, Francesco Di Paola, and Mariassunta Viggiano. 2013. "Dust Detection and Optical Depth Retrieval Using MSG‑SEVIRI Data" Atmosphere 4, no. 1: 35-47. https://doi.org/10.3390/atmos4010035
APA StyleRomano, F., Ricciardelli, E., Cimini, D., Di Paola, F., & Viggiano, M. (2013). Dust Detection and Optical Depth Retrieval Using MSG‑SEVIRI Data. Atmosphere, 4(1), 35-47. https://doi.org/10.3390/atmos4010035