Atmospheric Ozone and Methane in a Changing Climate
Abstract
:1. Introduction
2. Processes Affecting Ozone and Methane
2.1. Important Ozone and Methane Chemistry
2.2. Pollutant Emissions and Their Impact on Ozone, Methane and Radiative Forcing (RF)
2.3. Impact of Increased Temperatures on Tropospheric Ozone Levels
Maximum Monthly Average (Observations) | June | July | August | 3 Months Average |
---|---|---|---|---|
2007 | 73 | 70 | 68 | 70 |
2000–2010 | 65 | 68 | 61 | 65 |
1961–1990 | 35 | 47 | 40 | 41 |
3. Climate-Chemistry Interactions
3.1. IPCC Relevance
3.2. Biosphere-Atmosphere Coupling
3.3. Impact of Methane Emissions from Permafrost Thawing in the Arctic
Adopted Relative Increase in Atmospheric CH4(%) | 3.0 | 6.0 | 12.0 |
---|---|---|---|
Increase in global release of CH4 (Gt/year) | 1.9 | 3.0 | 4.8 |
Maximum increase in tropospheric ozone (ppb) | 50 | 70 | 120 |
Increase in stratospheric H2O (%) | 30–80 | 40–120 | 80–120 |
Increase in RF (W∙m−2) | 2.1 | 3.4 | 5.2 |
3.4. Impact of Transport on the Low Late-Winter Ozone Values in the Arctic in 2011
3.5. Stratospheric Ozone Changes due to Changes in Dynamics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK/New York, NY, USA, 2007. [Google Scholar]
- Isaksen, I.S.A.; Granier, C.; Myhre, G.; Berntsen, T.K.; Dalsøren, S.B.; Gauss, M.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W. Atmospheric composition change: Climate-Chemistry interactions. Atmos. Environ. 2009, 43, 5138–5192. [Google Scholar] [CrossRef]
- Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K. Atmospheric composition change: Ecosystems-Atmosphere interactions. Atmos. Environ. 2009, 43, 5193–5267. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.; Akimoto, H.; Amman, M.; Baklanov, A.; Baltensperger, U.; Bey, I. Atmospheric composition change-global and regional air quality. Atmos. Environ. 2009, 43, 5268–5351. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Johnson, C.E.; Collins, W.J.; Derwent, R.G.; Edwards, J.M. Future estimates of tropospheric ozone radiative forcing and methane turnover—The impact of climate change. Geophys. Res. Lett. 2000, 27, 2073–2076. [Google Scholar] [CrossRef]
- Fiore, A.M.; Naik, A.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, M.; Cionni, I.; Collins, W.J. Global air quality and climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef] [PubMed]
- Wild, O.; Fiore, A.M.; Shindell, D.T.; Doherty, R.M.; Collins, W.J.; Dentener, F.J.; Schultz, M.G.; Gong, S.; MacKenzie, I.A.; Zeng, G.; et al. Modelling future changes in surface ozone: A parameterized approach. Atmos. Chem. Phys. 2012, 12, 2037–2054. [Google Scholar] [CrossRef] [Green Version]
- National Academy of Sciences. Environmental Impact of Stratospheric Flight, Biological and Climatic Effects of Airceaft Emissions in the Stratosphere; National Academy of Sciences: Washington, DC, USA, 1975. [Google Scholar]
- Sitch, S.; Cox, P.M.; Collins, W.J.; Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 2007, 448, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Solberg, S.; Hov, Ø; Søvde, A.; Isaksen, I.S.A.; Coddeville, P.; de Backer, H.; Forster, C.; Orsolini, Y.; Uhse, K. European surface ozone in the extreme summer 2003. J. Geophys. Res.: Atmos. 2008. [Google Scholar] [CrossRef]
- Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, N.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 478, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Sinnhuber, B.-M.; Stiller, G.; Ruhnke, R.; von Clarmann, T.; Kellmann, S.; Aschmann, J. Arctic winter 2010/2011 at the brink of an ozone hole. Geophys. Res. Lett. 2011. [CrossRef]
- Isaksen, I.S.A.; Zerefos, C.; Wang, W.-C.; Balis, D.; Eleftheratos, K.; Rognerud, B.; Stordal, F.; Berntsen, T.K.; LaCasce, J.H.; Søvde, O.A.; et al. Attribution of Arctic ozone loss in March 2011. Geophys. Res. Lett. 2012. [CrossRef]
- Eleftheratos, K.; Isaksen, I.S.A.; Zerefos, C.; Nastos, P.; Tourpali, K.; Rognerud, B. Ozone variations derived by a chemical transport model. Water Air Soil Pollut. 2013. [CrossRef]
- Zerefos, C.S.; Tourpali, K.; Eleftheratos, K.; Kazadzis, S.; Meleti, C.; Feister, U.; Koskela, T.; Heikkilä, A. Evidence of a possible turning point in solar UV-B over Canada, Europe and Japan. Atmos. Chem. Phys. 2012, 12, 2469–2477. [Google Scholar] [CrossRef] [Green Version]
- Hauglustaine, D.A.; Lathière, J.; Szopa, S.; Folberth, G.A. Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys. Res. Lett. 2005. [CrossRef]
- Liao, H.; Chen, W.-T.; Seinfeld, J.H. Role of climate change in global predictions of future tropospheric ozone and aerosols. J. Geophys. Res.: Atmos. 2006. [Google Scholar] [CrossRef]
- Kvalevåg, M.M.; Myhre, G. The effect of carbon-nitrogen coupling on the reduced land carbon sink caused by tropospheric ozone. Geophys. Res. Lett. 2013, 40, 3227–3231. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Chappellaz, J. Shifting Gear, Quickly. Science 2009, 324, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Isaksen, I.S.A.; Gauss, M.; Myhre, G.; Walter Anthony, K.M.; Ruppel, C. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob. Biogeochem. Cycles 2011. [CrossRef]
- Schmidt, G.A.; Shindell, D.T. Atmospheric composition, radiative forcing, and climate change as a consequence of massive methane relies from gas hydrates. Paleoceanography 2003. [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskov, V.; Gustafsson, Ö. Ebullition and storm-induced methane release from the East Siberian Arctic shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar]
- Eyring, V.; Isaksen, I.S.A.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Hoor, P.J.; Borken-Kleefeld, D.; Caro, O.; Dessens, O.; Endresen, M.; Gauss, V.; Grewe, D.; Hauglustaine, I.S.A.; Isaksen, P.; Jöckel, J.; et al. The impact of traffic emissions on atmospheric ozone and OH: Results from QUANTIFY. Atmos. Chem. Phys. 2009, 9, 3113–3136. [Google Scholar] [CrossRef]
- IPCC. Atmospheric Chemistry and Greenhouse Gases; IPCC WGI Third Assessment Report; IPCC: Geneva, Switzerland, 2001; pp. 239–287. [Google Scholar]
- Isaksen, I.S.A.; Hov, Ø. Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NOx. Tellus 1987, 39B, 271–285. [Google Scholar]
- Prather, M.; Ehhalt, D. Atmospheric chemistry and greenhouse gases. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, N., van der Linden, P.J., Xiaosu, D., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 239–287. [Google Scholar]
- Voulgarakis, A.; Naik, V.; Lamarque, J.-F.; Shindell, D.T.; Young, P.J.; Prather, M.J.; Wild, O.; Field, R.D.; Bergmann, D.; Cameron-Smith, P.; et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 2013, 13, 2563–2587. [Google Scholar] [CrossRef] [Green Version]
- Mickley, L.J.; Jacob, D.J.; Rind, D. Uncertainty in preindustrial abundance of tropospheric ozone: Implications for radiative forcing calculations. J. Geophys. Res.: Atmos. 2001, 106, 3389–3399. [Google Scholar]
- Fiore, A.M.; Levy, H., II; Ming, Y.; Fang, Y.; Horowitz, L.W. Interactions between air quality and climate. In Air Pollution Modeling and Its Application XX; Springer: Dordrecht, The Netherlands, 2010; pp. 481–489. [Google Scholar]
- Brasseur, G.P.; Schultz, M.; Granier, C.; Saunois, M.; Diehl, T.; Botzet, M.; Roeckner, E.; Walters, S. Impact of climate change on the future chemical composition of the global troposphere. J. Clim. 2006, 19, 3932–3951. [Google Scholar] [CrossRef]
- Hodnebrog, O.; Berntsen, T.K.; Dessens, O.; Gauss, M.; Grewe, V.; Isaksen, S.A.; Koffi, B.; Myhre, G.; Olivie, D.; Prather, M.J.; et al. Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios. Atmos. Chem. Phys. 2012, 12, 12211–12225. [Google Scholar]
- Hoyle, C.R.; Myhre, G.; Isaksen, I.S.A. Present-day contribution of anthropogenic emissions from China to the global burden and radiative forcing of aerosol and ozone. Tellus 2009, 61B, 618–626. [Google Scholar] [CrossRef]
- Skowron, A.; Lee, D.S.; de Leon, R.R. The assessment of the impact of aviation NOx on ozone and other radiative forcing responses—The importance of representing cruise altitudes accurately. Atmos. Environ. 2013, 74, 159–168. [Google Scholar] [CrossRef]
- Søvde, O.A.; Gauss, M.; Smyshlyaev, S.P.; Isaksen, I.S.A. Evaluation of the chemical transport model Oslo CTM2 with focus on arctic winter ozone depletion. J. Geophys. Res.: Atmos. 2008. [Google Scholar] [CrossRef]
- Søvde, O.A.; Prather, M.J.; Isaksen, I.S.A.; Berntsen, T.K.; Stordal, F.; Zhu, X.; Holmes, C.D.; Hsu, J. The chemical transport model Oslo CTM3. Geosci. Model Dev. 2012, 5, 1441–1469. [Google Scholar] [CrossRef]
- Tsai, I.-C.; Chen, J.-P.; Lin, P.-Y.; Wang, W.-C.; Isaksen, I.S.A. Sulfur cycle and sulfate radiative forcing simulated from a coupled global climate-chemistry model. Atmos. Chem. Phys. 2010, 10, 3693–3709. [Google Scholar] [CrossRef]
- Unger, N.; Shindell, D.T.; Koch, D.M.; Amann, M.; Cofala, J.; Streets, D.G. Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures. J. Geophys. Res.: Atmos. 2006. [Google Scholar] [CrossRef]
- Ødemark, K.; Dalsøren, S.B.; Samset, B.H.; Berntsen, T.K.; Fuglestvedt, J.S.; Myhre, G. Short-lived climate forcers from current shipping and petroleum activities in the Arctic. Atmos. Chem. Phys. 2012, 12, 1979–1993. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.D.; Tang, Q.; Prather, M.J. Uncertainties in climate assessment for the case of aviation NO. Proc. Natl. Acad. Sci. USA 2011, 108, 10997–11002. [Google Scholar] [CrossRef] [PubMed]
- Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A.; et al. Impact of forest fires, biogenic emissions and high temperatures on the elevated eastern mediterranean ozone levels during the hot summer of 2007. Atmos. Chem. Phys. 2012, 12, 8727–8750. [Google Scholar] [CrossRef] [Green Version]
- Ganzeveld, L.; Bouwman, L.; Stehfest, E.; van Vuuren, D.P.; Eickhout, B.; Lelieveld, J. Impact of future land use and land cover changes on atmospheric chemistry-climate interactions. J. Geophys. Res.: Atmos. 2010. [Google Scholar] [CrossRef]
- Sanderson, M.G.; Jones, C.D.; Collins, W.J.; Johnson, C.E.; Derwent, R.G. Effect of climate change on Isoprene emissions and surface ozone levels. Geophys. Res. Lett. 2003. [CrossRef]
- Turner, B.L., II; Meyer, W.B.; Skole, D.L. Global landuse/land cover change: Towards an integrated study. Ambio 1994, 23, 91–95. [Google Scholar]
- Turner, B.L., II; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change Science/Research Plan; IHDP Report No. 7; Royal Swedish Academy of Sciences: Stockholm, Sweden, 1995. [Google Scholar]
- Wu, S.; Mickley, L.J.; Kaplan, J.O.; Jacob, D.J. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys. 2012, 12, 1597–1609. [Google Scholar] [CrossRef]
- Shakhova, N.E.; Sergienko, V.I.; Semiletov, I.P. The contribution of the East Siberian shelf to the modern methane cycle. Her. Russ. Acad. Sci. 2009, 79, 217–246. [Google Scholar] [CrossRef]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S., III. Permafrost and global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.E.; Alekseev, V.A.; Semiletov, I.P. Predicted methane emission on the east Siberian shelf. Dokl. Earth Sci. 2010, 430, 190–193. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Candell, J.G.; Auskirchen, E.; Field, C.B.; Goeyachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vunerability of permafrost carbon to climate change: Implications for the carbon cycle. Bioscience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Nikulin, G.; Santee, M.L.; Froidevaux, L. Record-breaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997. Atmos. Chem. Phys. 2012, 12, 7073–7085. [Google Scholar]
- Pommereau, J.-P.; Goutail, F.; Lefevre, F.; Pazmino, A.; Adams, C.; Dorokhov, V.; Eriksen, P.; Kivi, R.; Stebel, K.; Xhou, X.; et al. Why unpresedented ozone loss in the Arctic in 2011? Is it related to climate change? Atmos. Chem. Phys. 2013, 13, 5299–5308. [Google Scholar]
- Chipperfield, M.P.; Jones, R.L. Relative influences of atmospheric chemistry and transport on Arctic ozone trends. Nature 1999, 400, 551–554. [Google Scholar] [CrossRef]
- Tegtmeier, S.; Rex, M.; Wohltmann, I.; Krüger, K. Relative importance of dynamical and chemical contributions to Arctic wintertime ozone. Geophys. Res. Lett. 2008. [CrossRef]
- Eleftheratos, K.; Zerefos, C.S.; Gerasopoulos, E.; Isaksen, I.S.A.; Rognerud, B.; Dalsoren, S.; Varotsos, C. A note on the comparison between total ozone from Oslo CTM2 and SBUV satellite data. Int. J. Remote Sens. 2011, 32, 2535–2545. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Isaksen, I.S.A.; Berntsen, T.K.; Dalsøren, S.B.; Eleftheratos, K.; Orsolini, Y.; Rognerud, B.; Stordal, F.; Søvde, O.A.; Zerefos, C.; Holmes, C.D. Atmospheric Ozone and Methane in a Changing Climate. Atmosphere 2014, 5, 518-535. https://doi.org/10.3390/atmos5030518
Isaksen ISA, Berntsen TK, Dalsøren SB, Eleftheratos K, Orsolini Y, Rognerud B, Stordal F, Søvde OA, Zerefos C, Holmes CD. Atmospheric Ozone and Methane in a Changing Climate. Atmosphere. 2014; 5(3):518-535. https://doi.org/10.3390/atmos5030518
Chicago/Turabian StyleIsaksen, Ivar S. A., Terje K. Berntsen, Stig B. Dalsøren, Kostas Eleftheratos, Yvan Orsolini, Bjørg Rognerud, Frode Stordal, Ole Amund Søvde, Christos Zerefos, and Chris D. Holmes. 2014. "Atmospheric Ozone and Methane in a Changing Climate" Atmosphere 5, no. 3: 518-535. https://doi.org/10.3390/atmos5030518