Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration
Abstract
:1. Introduction
2. Evaluation of Model Uncertainty for Two ET Models
The Steps to Evaluate the Uncertainty
- Model the measurementy is not measured directly and determined from K quantities .The functional relationship is as follows:
- Ensure the uncertainty source and calculate the estimated values of :
- Evaluate the uncertainty classified as A and B types.
- Estimate the covariance of each .
- Calculate the sensitivity coefficient, :
- Calculate the combining uncertainty and effective degree of freedom.
- Determine a coverage factor and expanded uncertainty.
- Report the uncertainty.
- The error sources and uncertainty sources can be distinguished.
- The effect of the uncertainty can be quantified. The propagation of uncertainty can be traced and evaluated.
- The uncertainty can be expressed as numeric values and confidence intervals.
- The numeric values of parameters in the biological model can be recognized as the error source, which can be quantified with uncertainty.
- The contribution of variables and the performance of sensors can be evaluated. The contribution of variables on the ET model could be derived by Equations (10) and (11). In this brief report, one sample of local climate data was used to evaluate the effect of environmental measurement uncertainty on prediction of evapotranspiration. The interaction of variables was not considered in this study, so the covariance of each was considered. Equation (10) can then be simplified.
3. Results
Uncertainty Analysis of Two Evapotranspiration Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Food and Agriculture Organisation: Rome, Italy, 1977. [Google Scholar]
- Ilahi, W.F.F. Evapotranspiration Models in Greenhouse. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2009. [Google Scholar]
- Luoa, C.; Wanga, Z.; Sauer, T.J.; Helmers, M.J.; Hortona, R. Portable canopy chamber measurements of evapotranspiration in corn, soybean, and reconstructed prairie. Agric. Water Manag. 2018, 198, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Burian, S.J.; Pardyjak, E.R. Observation and estimation of evapotranspiration from an irrigated green roof in a rain-scarce snvironment. Water 2018, 10, 262. [Google Scholar] [CrossRef]
- Stanghellini, C. Transpiration of Greenhouse Crops an Aid to Climate Management. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands, 1987. [Google Scholar]
- Bailey, B.J.; Montero, J.I.; Blel, C.; Wilkinson, D.J.; Anton, A.; Jolhet, O. Transpiration of Ficus benjamina: Comparison of measurements with predictions of the Penman–Monteith model and a simplified version. Agric. For. Meteorol. 1993, 65, 229–243. [Google Scholar] [CrossRef]
- Baille, M.; Baille, A.; Laury, J.C. A simplified model for predicting evapotranspiration rate of nine ornamental species vs climate factors and leaf area. Sci. Hortic. 1994, 59, 217–232. [Google Scholar] [CrossRef]
- Baille, M.; Baille, A.; Laury, J.C. Canopy surface resistances to water vapour transfer for nine greenhouse pot plant crops. Sci. Hortic. 1994, 57, 143–155. [Google Scholar] [CrossRef]
- Seginer, I. The Penman–Monteith evapotranspiration equation as an element in greenhouse ventilation design. Biosyst. Eng. 2002, 82, 423–439. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Modelling the transpiration of a greenhouse zucchini crop grown under a Mediterranean climate using the Penman–Monteith equation and its simplified version. Aust. J. Agric. Res. 2004, 55, 931–937. [Google Scholar] [CrossRef]
- Medrano, E.; Lorenzo, P.; Sa´nchez-Guerrero, M.C.; Montero, J.I. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Sci. Hortic. 2005, 105, 163–175. [Google Scholar] [CrossRef]
- Irmak, A. Evapotranspiration—Remote Sensing and Modeling; INTECH open Access Publisher: London, UK, 2011. [Google Scholar]
- Gerosa, G. Evapotranspiration—From Measurements to Agricultural and Environmental Applications; INTECH open Access Publisher: London, UK, 2011. [Google Scholar]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Xiao, W.; Wei, Z.; Wen, X. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method—A review. Agrc. For. Meteorol. 2018, 263, 346–361. [Google Scholar] [CrossRef]
- Knighton, J.; Saia, S.M.; Morris, C.K.; Archiblad, J.A.; Walter, M.T. Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed. Hydrol. Process. 2017, 31, 2438–2452. [Google Scholar] [CrossRef]
- Ivezic, V.; Bekic, D.; Horvat, B. Modelling of basin wide daily evapotranspiration with a partial integration of remote sensing data. Atmosphere 2018, 9, 120. [Google Scholar] [CrossRef]
- Martano, P. Evapotranspiration estimates over non-homogeneous mediterranean land cover by a calibrated “critical resistance” approach. Atmosphere 2015, 6, 255–272. [Google Scholar] [CrossRef]
- Zhao, P.; Lüers, J. Parameterization of evapotranspiration estimation for two typical East Asian crops. Atmosphere 2017, 8, 111. [Google Scholar] [CrossRef]
- Boulard, T.; Wang, S. Greenhouse crop transpiration simulation from external climate conditions. Agric. For. Meteorol. 2000, 100, 25–34. [Google Scholar] [CrossRef]
- Villarreal-Guerreroa, F.; Kaciraa, F.M.; Fitz-Rodrigueza, E.; Kubotab, C.; Giacomellia, G.A.; Linkerc, R.; Arbeld, A. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Sci. Hortic. 2012, 134, 210–221. [Google Scholar] [CrossRef]
- Hamby, D.M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Van Gadow, K.; Hui, G. Modelling Forest Development; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Brugnach, M.; Pahl-Wostl, C.; Lindenschmidt, K.E.; Janssen, J.A.E.B.; Filatova, T.; Mouton, A.; Holtz, G.; van der Keur, P.; Gaber, N. Complexity and uncertainty: Rethinking the modelling activity. Dev. Int. Environ. Assess. 2008, 3, 49–68. [Google Scholar]
- ISO; BIMP; IEC; IFCC; IUPAC; IUPAP; OIML. Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 1993. [Google Scholar]
- ISO/IEC 98-3. Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Crout, N.; Kokkonen, T.; Jakeman, A.J.; Norton, J.P.; Newham, L.T.H.; Anderson, R.; Assaf, H.; Croke, B.F.W.; Gaber, N.; Gibbons, J.; et al. Good modelling practice. Dev. Int. Environ. Assess. 2008, 3, 15–31. [Google Scholar]
- Larocque, G.R.; Bhatti, J.S.; Gordon, A.M.; Luckai, N.; Wattenba, M.; Liu, J.; Peng, C.; Arp, P.A.; Liu, S.; Zhang, C.F.; et al. Uncertainty and sensitivity issues in process-based models of carbon and nitrogen cycles in terrestrial ecosystems. Dev. Inte. Environ. Assess. 2008, 3, 307–327. [Google Scholar]
- ASHRAE. Brochure on psychrometry. American Society of Heating, Refrigerating, and Air; Conditioning Engineers: Atlanta, GA, USA, 1977. [Google Scholar]
- Picard, A.; Davis, R.; Glaser, M.; Fuji, K. Revised formula for the density of moist air (CIPM-2007). Metrologia 2006, 45, 149–155. [Google Scholar] [CrossRef]
- Albright, L.D. Psychometrics. Environmental Control for Animals and Plants; The American Society of Agricultural Engineers: Joseph, MI, USA, 1990. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Tahiri, A.; Anyoji, H.; Yasuda, H. Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize. Agric. Water Manag. 2006, 84, 186–192. [Google Scholar] [CrossRef]
- Chen, C. Evaluation of measurement uncertainty for thermometers with calibration equations. Accredit. Qual. Assur. 2006, 11, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Chen, C. Uncertainty evaluation of humidity sensors calibrated by saturated salt solutions. Measurement 2007, 40, 591–599. [Google Scholar] [CrossRef]
- Simic, A.; Fernandes, R.; Wang, S. Assessing the impact of leaf area index on evapotranspiration and groundwater recharge across a shallow water region for diverse land cover and soil properties. J. Water Res. Hydraul. Eng. 2017, 3, 60–73. [Google Scholar]
- Kumar, R.; Shankar, V.; Kumar, M. Modelling of crop reference evapotranspiration: A review. Universal J. Environ. Res. Technol. 2001, 1, 239–246. [Google Scholar]
- Dovey, S.B.; du Toit, B. Calibration of LAI-2000 canopy analyser with leaf area index in a young eucalypt stand. Trees 2006, 20, 273–277. [Google Scholar] [CrossRef]
- Bread, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2013, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Olivas, P.C.; Steven, F.; Oberbauer, D.B.; Clark, D.A.; Clark, M.G.; Ryan, M.G.; O’Brien, J.J.; Ordoñez, H. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agric. Meteorol. 2013, 177, 110–116. [Google Scholar] [CrossRef]
- Blanco, F.F.; Folegatti, M.V. A new method for estimating the leaf area index of cucumber and tomato plants. Hortic. Bras. 2003, 21, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Carmassi, G.; Incrocci, L.; Incrocci, G.; Pardossi, A. Non-destructive estimation of leaf area in (Solanum lycopersicum L.) and gerbera (Gerbera jamesonii H. Bolus). Agric. Mediterr. 2007, 137, 172–176. [Google Scholar]
- Vignola, F.; Joseph Michalsky, J.; Stoffel, T. Solar and Infrared Radiation Measurements; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Myers, D.R.; Stoffel, T.L.; Reda, I.; Wicoz, S.M.; Andreas, A.M. Recent progress in reducing the uncertainty in and improving Pyranometer calibrations. Trans. ASME 2002, 124, 44–50. [Google Scholar] [CrossRef]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorgio, F.; Tognoni, F.; Pardossi, A. An aggregated model for water requirements of greenhouse tomato grown in closed rockwool culture with saline water. Agric. Water Manag. 2007, 88, 73–82. [Google Scholar] [CrossRef]
- Marfà, O.; Biel, C.; Blanch, F.; Montero, J.I. Water consumption of a closed soilless culture of gerbera: Usefulness of model to estimate evapotranspiration. Acta. Hortic. 2000, 534, 147–153. [Google Scholar] [CrossRef]
- Bacci, L.; Battista, P.; Cardarelli, M.; Carmassi, G.; Rouphael, Y.; Incrocci, L.; Malorgio, F.; Pardossi, A.; Rapi, B.; Colla, G. Modelling Evapotranspiration of Container Crops for Irrigation Scheduling. In Evapotranspiration-From Measurements to Agricultural and Environmental Applications; InTech Open Access Publisher: London, UK, 2011. [Google Scholar] [Green Version]
- Cooman, A.; Schrevens, E. Sensitivity of the Tomgro model of solar radiation intensity, air temperature and carbon dioxide concentration. Biosyst. Eng. 2007, 96, 249–255. [Google Scholar] [CrossRef]
- Carmassi, G.; Bacci, L.; Bronzini, M.; Incrocci, L.; Maggini, R.; Bellocchi, G.; Massa, D.; Pardossi, A. Modelling transpiration of greenhouse gerbera (Gerbera jamesonii H. Bolus) grown in substrate with saline water in a Mediterranean. Sci. Hortic. 2013, 156, 9–18. [Google Scholar] [CrossRef]
Variable | Unit | Reference Equation or Values |
---|---|---|
, latent heat of evaporation | KJ/Kg | [31] |
s, slope of the saturation vapor pressure curve | kPa/ | s = 0.08331 [23] |
, air density | Kg/m3 | [32] |
, specific heat of air | J/kg | [33] |
r, psychrometric content | kPa/ | r = 0.067567 [34,35] |
, canopy resistance | s/m | = 70 at day time [6] |
, aerodynamics resistance | s/m | = [6] |
A, constant of Baille ET equation | dimensionless | 0.24 [12] |
B, constant of Baille ET equation | 37.6 [12] |
Parameter | Unit | Reference Equation or Values |
---|---|---|
, net radiation | W/m2 | [36] |
G, soil heat flux | W/m2 | in greenhouse |
LAI, leaf area index | m2/m2 | |
VPD, vapor pressure deficit | kPa | VPD = (1−RH) |
PVS, saturation vapor pressure | kPa | PVS = |
RH, relative humidity | Decimal | |
T, temperature | °C | |
Uv, air speed | m/s | |
, solar radiation | W/m2 |
Variable | Uncertainty | Source |
---|---|---|
LAI | u(LAI) = 0.22 (10%) | [21] |
u(Is) = 25 W/m2 (8.3%) | Manufacturer’s specification | |
T | u(T) = 0.37 °C | [37] |
RH | u(RH) = 0.0165 | [38] |
Uv | Manufacturer’s specification |
Variables | g/m2-min | Ratio Values % |
---|---|---|
LAI | 453.13 | 83.20 |
65.69 | 12.07 | |
RH | 24.58 | 4.52 |
T | 0.843 | 0.15 |
Uv | 0.143 | 0.06 |
544.38 | 100% |
Variable | g/m2-min | Ratio |
---|---|---|
LAI | 147.40 | 83.23 |
22.22 | 12.55 | |
RH | 07.22 | 4.08 |
T | 0.26 | 0.14 |
177.10 | 100% |
U (Is) | U (LAI), g/m2-min | |||
---|---|---|---|---|
10% | 7.5% | 5.0% | 2.5% | |
8.3% | 0.389 | 0.310 | 0.234 | 0.161 |
5.0% | 0.374 | 0.291 | 0.213 | 0.147 |
2.5% | 0.367 | 0.282 | 0.201 | 0.129 |
U (Is) | U (LAI), g/m2-min | |||
---|---|---|---|---|
10% | 7.5% | 5.0% | 2.5% | |
8.3% | 0.222 | 0.177 | 0.136 | 0.104 |
5.0% | 0.213 | 0.165 | 0.121 | 0.083 |
2.5% | 0.209 | 0.160 | 0.114 | 0.072 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-H.; Chen, J.; Chen, C. Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration. Atmosphere 2018, 9, 400. https://doi.org/10.3390/atmos9100400
Chen L-H, Chen J, Chen C. Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration. Atmosphere. 2018; 9(10):400. https://doi.org/10.3390/atmos9100400
Chicago/Turabian StyleChen, Ling-Hsi, Jiunyuan Chen, and Chiachung Chen. 2018. "Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration" Atmosphere 9, no. 10: 400. https://doi.org/10.3390/atmos9100400
APA StyleChen, L.-H., Chen, J., & Chen, C. (2018). Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration. Atmosphere, 9(10), 400. https://doi.org/10.3390/atmos9100400