Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occupational Environment and Sampling Locations
2.2. Particulate Matter Collection and Measurement
2.3. Electrostatic Dust Cloth (EDC) Extraction and Bioburden Characterization
2.4. Statistical Analysis
3. Results
3.1. Particulate Matter Assessment
3.2. Bioburden—Fungi Assessment
3.3. Bioburden—Bacteria Assessment
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lacey, J.; Dutkiewicz, J. Bioaerosols and occupational lung disease. J. Aerosol Sci. 1994, 25, 1371–1404. [Google Scholar] [CrossRef]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed]
- Eduard, W.; Heederikc, D.; Duchained, D.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Sturm, R. Bioaerosols in the lungs of subjects with different ages-part 1: Deposition modeling. Ann. Transl. Med. 2016, 4, 211. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society. Respiratory health hazards in agriculture. Am. J. Respir. Crit. Care Med. 1998, 158, 1–57. [Google Scholar]
- Seedorf, J.; Hartung, J.; Schröder, M.; Linkert, K.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Pedersen, P.; et al. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in northern Europe. J. Agric. Eng. Res. 1998, 70, 97–109. [Google Scholar] [CrossRef]
- Viegas, S.; Mateus, V.; Almeida-Silva, M.; Carolino, E.; Viegas, C. Occupational Exposure to Particulate Matter and Respiratory Symptoms in Portuguese Swine Barn Workers. J. Toxicol. Environ. Health A 2013, 76, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Faísca, V.M.; Dias, H.B.; Clérigo, A.; Carolino, E.; Viegas, C. Occupational exposure to poultry dust and effects on the respiratory system in workers. J. Toxicol. Environ. Health A 2013, 76, 230–239. Available online: http://hdl.handle.net/10400.21/2462 (accessed on 11 February 2018). [CrossRef] [PubMed]
- Viegas, C.; Faria, T.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. Aspergillus spp. prevalence in different occupational settings. J. Occup. Environ. Hyg. 2017. [Google Scholar] [CrossRef] [PubMed]
- Gladding, T.L.; Thorn, J.; Stott, D. Organic dust exposure and work-related effects among recycling workers. Am. J. Ind. Med. 2003, 43, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Van Tongeren, M.; Van Amelsvoort, L.; Heederik, D. Exposure to organic dusts, endotoxins, and microorganisms in the municipal waste industry. Int. J. Occup. Environ. Health 1997, 3, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Krajewski, J.A.; Tarkowski, S.; Cyprowski, M.; Szarapińska-Kwaszewska, J.; Dudkiewicz, B. Occupational exposure to organic dust associated with municipal waste collection and management. Int. J. Occup. Med. Environ. Health 2002, 15, 289–301. [Google Scholar] [PubMed]
- Viegas, S.; Almeida-Silva, M.; Viegas, C. Occupational exposure to particulate matter in 2 Portuguese waste-sorting units. Int. J. Occup. Med. Environ. Health 2014, 27, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.H.A. Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia 2007, 23, 59–69. [Google Scholar] [CrossRef]
- Viegas, S.; Faria, T.; dos Santos, M.; Carolino, E. Task-based approach importance for the occupational risk assessment-the case of particles exposure in feed industry. In Proceedings of the International Symposium on Occupational Safety and Hygiene SHO2016, Guimarães, Portugal, 23–24 March 2016. [Google Scholar]
- Viegas, C.; Faria, T.; Carolino, E.; Sabino, R.; Quintal Gomes, A.; Viegas, S. Occupational Exposure to Fungi and Particles in Animal Feed Industry. Medycyna Pracy 2016, 67, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, A.; Rusca, S.; Charrière, N.; Vu duc, T.; Droz, P.-O. Assessment of Bioaerosols and Inhalable Dust Exposure in Swiss Sawmills. Ann. Occup. Hyg. 2005, 49, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Krysińska-Traczyk, E.; Prazmo, Z.; Skoŕska, C.; Sitkowska, J. Exposure to airborne microorganisms in Polish sawmills. Ann. Agric. Environ. Med. 2001, 8, 71–80. [Google Scholar] [PubMed]
- Laakkonen, A.; Kyyrönen, P.; Kauppinen, T.; Pukkala, E.I. Occupational exposure to eight organic dusts and respiratory cancer among Finns. Occup. Environ. Med. 2006, 63, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Zuskin, E.; Mustajbegović, J.; Schachter, E.N.; Kern, J.; Ivanković, D.; Heimer, S. Respiratory function in female workers occupationally exposed to organic dusts in food processing industries. Acta Med. Croat. 2000, 54, 183–191. [Google Scholar]
- Milanowski, J.; Góra, A.; Skórska, C.; Mackiewicz, B.; Krysińska-Traczyk, E.; Cholewa, G.; Sitkowska, J.; Dutkiewicz, J. The effects of exposure to organic dust on the respiratory system of potato processing workers. Ann. Agric. Environ. Med. 2002, 9, 243–247. [Google Scholar] [PubMed]
- Stobnicka, A.; Górny, R.L. Exposure to flour dust in the occupational environment. Int. J. Occup. Saf. Ergon. 2015, 21, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Mohammadien, H.A.; Hussein, M.T.; El-Sokkary, R.T. Effects of exposure to flour dust on respiratory symptoms and pulmonary function of mill workers. Egypt J. Chest Dis. Tuberc. 2013, 62, 745–753. [Google Scholar] [CrossRef]
- Meo, S.A. Dose responses of years of exposure on lung function in flour mill workers. J. Occup. Health 2004, 46, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Patouchas, D.; Sampsonas, F.; Papantrinopoulou, D.; Tsoukalas, G.; Karkoulias, K.; Spiropoulos, K. Determinants of specific sensitization in flour allergens in workers in bakeries with use of skin prick tests. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 407–411. [Google Scholar] [PubMed]
- Subbarao, P.; Mandhane, P.J.; Sears, M.R. Asthma: Epidemiology, etiology and risk factors. CMAJ 2009, 181, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; AL-Dress, A.M. Lung function among nonsmoking Wheat flour mill workers. Int. J. Occup. Med. Environ. Health 2005, 18, 246–251. [Google Scholar]
- Karpinski, E.A. Exposure to inhalable flour dust in Canadian flour mills. Appl. Occup. Environ. Hyg. 2003, 18, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Cotton, D.J.; Dosman, J.A. Grain dust and health. III. Environmental factors. Anal. Int. Med. 1978, 89, 420–421. [Google Scholar] [CrossRef]
- American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substances and Physical Agents and Biliological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2009. [Google Scholar]
- Kilburg-Basnyat, B.; Metwali, N.; Thorne, P.S. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating and electrostatic charge. J. Occup. Environ. Hyg. 2016, 13, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Cozen, W.; Avol, E.; Diaz-Sanchez, D.; McConnell, R.; Gauderman, W.J.; Cockburn, M.G.; Mack, T.M. Use of an electrostatic dust cloth for self-administered home allergen collection. Twin Res. Hum. Genet. 2008, 11, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Normand, A.C.; Vacheyrou, M.; Sudre, B.; Heederik, D.J.J.; Piarroux, R. Assessment of dust sampling methods for the study of cultivable-microorganism exposure in stables. Appl. Environ. Microbiol. 2009, 75, 7617–7623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badyda, A.; Gayer, A.; Czechowski, P.; Majewski, G.; Dąbrowiecki, P. Pulmonary function and incidence of selected respiratory diseases depending on the exposure to ambient PM10. Int. J. Mol. Sci. 2016, 17, 1954. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Pinheiro, C.; Sabino, R.; Viegas, S.; Brandão, J.; Veríssimo, C. (Eds.) Environmental Mycology in Public Health: Fungi and Mycotoxins Risk Assessment and Management; Academic Press: Waltham, MA, USA, 2015. [Google Scholar]
- Weijers, E.P.; Khlystov, A.Y.; Kos, G.P.A.; Erisman, J.W. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. Atmos. Environ. 2004, 38, 2993–3002. [Google Scholar] [CrossRef]
- Wichmann, H.E.; Spix, C.; Tuch, T.; Wolke, G.; Peters, A.; Heinrich, J.; Kreyling, W.G.; Heyder, J. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part 1: Role of particle number and particle mass. Res. Rep. Health Eff. Inst. 2000, 98, 5–86. [Google Scholar]
- De Hoog, G.S.; Guarro, J.; Gebé, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2000. [Google Scholar]
- Madsen, A.M.; Matthiesen, C.B.; Frederiksen, M.W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Timm, M. Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J. Environ. Monit. 2012, 14, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.I.; Tian, Y.; Taylor, J.W.; Bruns, T.D.; Hyvarinen, A.; Taubel, M. Passive dust collectors for assessing airborne microbial material. Microbiome 2015, 3, 46. [Google Scholar] [CrossRef] [PubMed]
- Bogdanovic, J.; Koets, M.; Sander, I.; Wouters, I.; Meijster, T.; Heederik, D.; van Amerongen, A.; Doekes, G. Rapid detection of fungal a-amylase in the work environment with a lateral flow immunoassay. J. Allergy Clin. Immunol. 2006, 118, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.; Doekes, G.; Heederik, D. Exposure to wheat allergen and fungal α-amylase in the homes of bakers. Clin. Exp. Allergy 2001, 31, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Hyvrinen, A.; Vahteristo, M.; Meklin, T.; Jantunen, M.; Nevalainen, A.; Moschandreas, D. Temporal and spatial variation of fungal concentrations in indoor air. Aerosol Sci. Technol. 2001, 35, 688–695. [Google Scholar] [CrossRef]
- Scott, J.A.; Summerbell, R.C.; Green, B.J. Detection of indoor bioaerosols. In Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Adan, O.C.G., Samson, R., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 353–379. [Google Scholar] [CrossRef]
- Noss, I.; Wouters, I.M.; Visser, M.; Heederik, D.J.J.; Thorne, P.S.; Brunekreef, B.; Doekes, G. Evaluation of a Low-Cost Electrostatic Dust Fall Collector for Indoor Air Endotoxin Exposure Assessment. Appl. Environ. Microbiol. 2008, 5621–5627. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Damp Indoor Spaces and Health; The National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Normand, A.C.; Ranque, S.; Cassagne, C.; Gaudart, J.; Sallah, K.; Charpin, D.A.; Piarroux, R. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings. Ann. Occup. Hyg. 2015, 60, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Faria, T.; Meneses, M.; Carolino, E.; Viegas, S.; Gomes, A.; Sabino, R. Analysis of surfaces for characterization of fungal burden—Does it matter? Int. J. Occup. Med. Environ. Health 2016, 29, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Baranyi, N.; Chandrasekaran, M.; Vágvölgyi, C.; Kocsubé, S. Mycotoxin producers in the Aspergillus genus: An update. Acta Biol. Szeged. 2015, 59, 151–167. [Google Scholar]
- Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Phelan, P.E.; Duan, T.; Raupp, G.B.; Fernando, H.J.S.; Che, F. Experimental study of indoor and outdoor airborne bacterial concentrations in Tempe, Arizona, USA. Aerobiologia 2003, 19, 201–211. [Google Scholar] [CrossRef]
- Mille-Lindblom, C.; Fischer, H.J.; Tranvik, L. Antagonism between bacteria and fungi, substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 2006, 113, 233–242. [Google Scholar] [CrossRef]
- Chmielowiec-Korzeniowska, A.; Tymczyna, L.; Drabik, A.; Krzosek, L. Microbial contamination level of air in animal waste utilization plants. Ann. Agric. Environ. Med. 2016, 23, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Gordon, T.; Priceand, O.; Asgharian, B. Thoracic and respirable particle definitions for human health risk assessment. Part. Fibre Toxicol. 2013, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Stuper, K.; Kawka, A.; Buśko, M.; Suchowilska, E.; Szwajkowska-Michałek, L.; Matysiak, A.; Wiwart, M.; Perkowski, J. The Effect of Mycoflora and Trichothecene Contents in Bread Wheat on Quality of Its Milling Products; Wroclaw University of Life Science Academic Publisher: Wroclaw, Poland, 2009; pp. 96–102. [Google Scholar]
- Roberge, B.; Aubin, S.; Cloutier, Y. Characterization of Dusts in Traditional Bakeries. Studies and Research Projects; Report R-760; IRSST: Montreál, QC, Canada, 2012; ISBN 978-2-89631-645-8. [Google Scholar]
- Viegas, S.; Almeida-Silva, M.; Faria, T.; Dos Santos, M.; Viegas, C. Occupational exposure assessment to particles with task-based approach. In Occupational Safety and Hygiene IV; Taylor and Francis Group: London, UK, 2016; pp. 1–6. ISBN 978-1-138-02942-2. [Google Scholar]
- Viegas, S.; Faria, T.; Viegas, C. Bakers exposure to flour dust—A exploratory study in a Portuguese Bakery. In Proceedings of the International Symposium on Occupational Safety and Hygiene SHO2017, Guimarães, Portuga, 10–11 April 2017; Portuguese Society of Occupational Safety and Hygiene: Guimarães, Portugal, 2017; pp. 116–117, ISBN 978-989-98203-7-1. [Google Scholar]
- Bergwall, C.; Stehn, B. Comparison of selective mycological agar media for the isolation and enumeration of xerophilic moulds and osmotolerant yeasts in granulated white sugar. Zuckerindustrie 2002, 127, 259–264. [Google Scholar]
- Alghamdi, M.A.; Shamy, M.; Redal, M.A.; Khoder, M.; Awad, A.H.; Elserougy, S. Microorganisms associated particulate matter: A preliminary study. Sci. Total Environ. 2014, 479–480, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Scheff, P.; Pulius, V.; Curtis, L.; Conroy, L. Indoor air quality in a middle school, Part II: Development ofemission factors for particulate matter and bioaerosols. Appl. Occup. Environ. Hyg. 2000, 15, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Jürgensen, C.W.; Madsen, A.M. Influence of everyday activities and presence of people in common indoor environments on exposure to airborne fungi. AIMS Environ. Sci. 2016, 3, 77–95. [Google Scholar] [CrossRef]
- Huang, P.Y.; Shi, Z.Y.; Chen, C.H.; Den, W.; Huang, W.M.; Tsai, J.J. Airborne and surface-bound microbial contamination in two intensive care units of a medical center in central Taiwan. Aerosol Air Qual. Res. 2013, 13, 1060–1069. [Google Scholar] [CrossRef]
Bakery | Electrostatic Dust Cloth (EDC) | EDC Location | Sampling Duration (Days) |
---|---|---|---|
1 | 1 | Warehouse | 15 |
2 | Production | 15 | |
2 | 3 | Warehouse | 15 |
4 | Production | 15 | |
3 | 5 | Warehouse | 13 |
6 | Production | 13 | |
4 | 7 | Production | 16 |
8 | Warehouse | 16 | |
9 | Store | 16 | |
5 | 10 | Warehouse | 15 |
11 | Production | 15 | |
12 | Store | 15 | |
6 | 13 | Production | 15 |
14 | Warehouse | 15 | |
15 | Store | 15 | |
7 | 16 | Production | 15 |
17 | Warehouse and Expedition | 15 | |
18 | Store | 15 | |
8 | 19 | Production | 15 |
20 | Warehouse | 15 | |
21 | Store | 15 | |
9 | 22 | Production | 15 |
23 | Warehouse | 15 | |
24 | Store | 15 | |
10 | 25 | Production | 15 |
26 | Warehouse | 15 | |
27 | Store | 15 | |
11 | 28 | Production | 15 |
29 | Warehouse | 15 | |
30 | Store | 15 | |
12 | 31 | Production | 16 |
33 | Warehouse | 16 | |
33 | Store | 16 |
Work Sites | Statistics | EDC (g) | PM 0.3 µm | PM 0.5 µm | PM 1 µm | PM 2.5 µm | PM 5 µm | PM 10 µm |
---|---|---|---|---|---|---|---|---|
Warehouse | Median | 0.94 | 1.394 × 106 | 1.419 × 105 | 3.021 × 104 | 8.617 × 103 | 1.162 × 103 | 1.131 × 103 |
Minimum | 0.75 | 3.749 × 105 | 2.531 × 104 | 6.476 × 103 | 3.556 × 103 | 3.07 × 102 | 249.00 | |
Maximum | 1.50 | 7.839 × 106 | 1.932 × 106 | 1.934 × 105 | 4.798 × 104 | 4.001 × 103 | 5.820 × 103 | |
Interquartile Range | 0.19 | 2.304 × 106 | 2.218 × 105 | 5.655 × 104 | 1.749 × 104 | 1.057 × 103 | 1.508 × 103 | |
Production | Median | 0.98 | 2.035 × 106 | 1.885 × 105 | 3.670 × 104 | 1.768 × 104 | 3.583 × 103 | 9.288 × 103 |
Minimum | 0.77 | 2.646 × 105 | 1.548 × 104 | 3.655 × 103 | 1.873 × 103 | 4.35 × 102 | 9.05 × 102 | |
Maximum | 1.50 | 8.172 × 106 | 1.628 × 106 | 1.661 × 105 | 6.201 × 104 | 1.777 × 104 | 1.107 × 105 | |
Interquartile Range | 0.09 | 2.411 × 106 | 2.643 × 105 | 5.436 × 104 | 2.502 × 104 | 1.534 × 103 | 2.024 × 104 | |
Store | Median | 0.90 | 9.507 × 105 | 1.303 × 105 | 2.089 × 104 | 5.280 × 103 | 3.90 × 102 | 3.91 × 102 |
Minimum | 0.72 | 2.046 × 105 | 1.626 × 104 | 3.991 × 103 | 1.557 × 103 | 1.66 × 102 | 1.84 × 102 | |
Maximum | 1.05 | 6.184 × 106 | 1.107 × 106 | 8.988 × 104 | 3.780 × 104 | 3.980 × 103 | 2.943 × 102 | |
Interquartile Range | 0.16 | 1.137 × 106 | 8.311 × 104 | 2.329 × 104 | 3.500 × 103 | 6.7 × 10 | 4.12 × 102 |
Fungal Species | MEA (%; n *) | DG18 (%; n *) |
---|---|---|
Acremonium sp. | 0; 0 | 0.28; 50 |
Chrysonilia sitophila | 21.2; 3000 | 0; 0 |
Aspergillus section Candidi | 2.11; 299 | 1.39; 249 |
Chrysosporium sp. | 4.92; 697 | 1.11; 199 |
Aspergillus section Circumdati | 0.35; 50 | 0; 0 |
Cladosporium sp. | 23.9; 3384 | 60.7; 10,850 |
Aspergillus section Aspergilli | 0.35; 50 | 0.28; 50 |
Fusarium culmorum | 0.35; 50 | 0; 0 |
Aspergillus section Fumigati | 0; 0 | 1.67; 299 |
Paecilomyces sp. | 0.35; 50 | 0; 0 |
Penicillium sp. | 42.6; 6020 | 34.3; 6121 |
Rhizopus sp. | 3.53; 500 | 0; 0 |
Syncephalastrum recemosum | 0.35; 50 | 0; 0 |
Aspergillus section Versicolores | 0; 0 | 0.28; 50 |
Work Sites | Statistics | Fungi (MEA) (CFU/m2) | Fungi (DG18) (CFU/m2) | Total Bacteria (CFU/m2) | Gram-Negative Bacteria (CFU/m2) |
---|---|---|---|---|---|
Warehouse | Median | 150 | 100 | 2610 | 0 |
Minimum | 0 | 0 | 0 | 0 | |
Maximum | 2890 * | 6420 * | 18,860 * | 2590 * | |
Interquartile Range | 500 | 224 | 6331 | 100 | |
Production | Median | 125 | 75 | 1070 | 50 |
Minimum | 0 | 0 | 0 | 0 | |
Maximum | 500 * | 448 * | 71,660 * | 5420 * | |
Interquartile Range | 437 | 249 | 13,090 | 174 | |
Store | Median | 500 | 149 | 3230 | 1150 |
Minimum | 0 | 0 | 50 | 0 | |
Maximum | 3140 * | 2940 * | 21,750 * | 11,150 * | |
Interquartile Range | 946 | 373 | 17,470 | 7140 |
Fungi (MEA) | Fungi (DG18) | Total Bacteria | Gram-Negative Bacteria | PM 0.3 µm | PM 0.5 µm | PM 1 µm | PM 2.5 µm | PM 5 µm | PM 10 µm | |
---|---|---|---|---|---|---|---|---|---|---|
EDC (g) | −0.185 | 0.372 * | −0.220 | −0.384 * | 0.691 ** | 0.715 ** | 0.549 ** | 0.112 | 0.188 | 0.518 * |
Fungi (MEA) | 0.500 * | 0.540 * | 0.280 | −0.428 * | −0.430 * | −0.294 | −0.081 | −0.084 | −0.152 | |
Fungi (DG18) | 0.352 * | −0.109 | −0.276 | 0.433 * | 0.371 * | 0.023 | −0.015 | −0.076 | ||
Total bacteria | 0.516 ** | −0.240 | −0.153 | −0.111 | −0.083 | −0.098 | −0.110 | |||
Gram–bact. | −0.134 | −0.143 | −0.183 | −0.185 | 0.193 | −0.171 | ||||
PM 0.3 µm | 0.949 ** | 0.730 ** | 0.066 | 0.045 | 0.029 | |||||
PM 0.5 µm | 0.825 ** | 0.117 | 0.046 | −0.020 | ||||||
PM 1 µm | 0.558 * | 0.163 | −0.043 | |||||||
PM 2.5 µm | 0.688 ** | 0.369 | ||||||||
PM 5 µm | 0.889 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viegas, C.; Monteiro, A.; Aranha Caetano, L.; Faria, T.; Carolino, E.; Viegas, S. Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries. Atmosphere 2018, 9, 64. https://doi.org/10.3390/atmos9020064
Viegas C, Monteiro A, Aranha Caetano L, Faria T, Carolino E, Viegas S. Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries. Atmosphere. 2018; 9(2):64. https://doi.org/10.3390/atmos9020064
Chicago/Turabian StyleViegas, Carla, Ana Monteiro, Liliana Aranha Caetano, Tiago Faria, Elisabete Carolino, and Susana Viegas. 2018. "Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries" Atmosphere 9, no. 2: 64. https://doi.org/10.3390/atmos9020064
APA StyleViegas, C., Monteiro, A., Aranha Caetano, L., Faria, T., Carolino, E., & Viegas, S. (2018). Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries. Atmosphere, 9(2), 64. https://doi.org/10.3390/atmos9020064