Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Ground-Level PM2.5 Measurements (Dependent Variable)
2.2. Temporal (Meteorological) and Spatial Predictors
2.3. Satellite Data
2.3.1. Satellite AOD Images
2.3.2. NDVI
2.4. PM2.5 Predictive Models
2.5. Validation
3. Results
PM2.5 Predictive PM2.5 Maps
4. Discussion
4.1. Relation between AOD and PM2.5 Based on Different Smoke Levels
4.2. Selected Predictor Variables
4.3 Relation between PM2.5 and NDVI
4.4. Relation between PM2.5 and Prevailing Wind Speed
4.5. Spatial Autocorrelation between AQ Measurements
4.6. Validating the Models by Leve-One-Out Cross Validation Procedure
4.7. Application of Integrated AOD-LUR Models in Rural Area
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chapter 4 Chemical Composition of Wildland Fire Emissions. Dev. Environ. Sci. 2008, 8, 79–107. [Google Scholar] [CrossRef]
- California Air Resources Board, Health and the California Department of Public Wildfire Smoke A Guide for Public Health Officials, California. 2011. Available online: https://oehha.ca.gov/media/wildfiresmoke2016.pdf (accessed on 22 April 2018).
- Reid, C.E.; Jerrett, M.; Tager, I.B.; Petersen, M.L.; Mann, J.K.; Balmes, J.R. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environ. Res. 2016, 150, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Kollanus, V.; Tiittanen, P.; Niemi, J.V.; Lanki, T. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environ. Res. 2016, 151, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Alberta Health Services. Wildfire Smoke and Your Health. 2018. Available online: https://myhealth.alberta.ca/Alberta/AlbertaDocuments/wildfire-smoke-and-your-health.pdf (accessed on 5 July 2018).
- Finlay, S.E.; Moffat, A.; Gazzard, R.; Baker, D.; Murray, V. Health impacts of wildfires. PLoS Curr. 2012, 1–28. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. 2013. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/health-effects-of-particulate-matter.-policy-implications-for-countries-in-eastern-europe,-caucasus-and-central-asia-2013 (accessed on 10 May 2018).
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Natural Resources Canada. Indicator: Forest fires. Available online: https://www.nrcan.gc.ca/forests/report/disturbance/16392 (accessed on 17 June 2018).
- NASA. Pacific Northwest Wildfires Severe in Intensity. Available online: https://www.nasa.gov/image-feature/goddard/pacific-northwest-wildfires-severe-in-intensity (accessed on 22 May 2018).
- Chen, L.; Verrall, K.; Tong, S. Air particulate pollution due to bushfires and respiratory hospital admissions in Brisbane, Australia. Int. J. Environ. Health Res. 2006, 16, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, G.; Sheppeard, V.; Khalaj, B.; Ayyar, A.; Lincoln, D.; Jalaludin, B.; Beard, J.; Corbett, S.; Lumley, T. Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia. Epidemiology 2010, 21, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Liousse, C.; Guillaume, B.; Grégoire, J.M.; Mallet, M.; Galy, C.; Pont, V.; Akpo, A.; Bedou, M.; Castéra, P.; Dungall, L.; et al. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmos. Chem. Phys. 2010, 10, 9631–9646. [Google Scholar] [CrossRef] [Green Version]
- Youssouf, H.; Liousse, C.; Roblou, L.; Assamoi, E.M.; Salonen, R.O.; Maesano, C.; Banerjee, S.; Annesi-Maesano, I. Quantifying wildfires exposure for investigating health-related effects. Atmos. Environ. 2014, 97, 239–251. [Google Scholar] [CrossRef]
- De Hoogh, K.; Gulliver, J.; van Donkelaar, A.; Martin, R.V.; Marshall, J.D.; Bechle, M.J.; Cesaroni, G.; Pradas, M.C.; Dedele, A.; Eeftens, M.; et al. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environ. Res. 2016, 151, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; Dons, E.; de Nazelle, A.; et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Zou, B.; Fang, X.; Luo, Y.; Wan, N.; Li, S. Land use regression modeling of PM2.5 concentrations at optimized spatial scales. Atmosphere 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Habermann, M.; Billger, M.; Haeger-Eugensson, M. Land use regression as method to model air pollution. Previous results for Gothenburg/Sweden. Procedia Eng. 2015, 115, 21–28. [Google Scholar] [CrossRef]
- Bertazzon, S.; Johnson, M.; Eccles, K.; Kaplan, G.G. Accounting for spatial effects in land use regression for urban air pollution modeling. Spat. Spatiotemporal. Epidemiol. 2015, 14, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Joseph, E.; Min, Q. Remote sensing of ground-level PM2.5 combining AOD and backscattering profile. Remote Sens. Environ. 2016, 183, 120–128. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Ying, N.; Wang, X.; Ma, J. Air quality evaluation on an urban scale based on MODIS satellite images. Atmos. Res. 2013, 132, 22–34. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 2006, 111, 1–10. [Google Scholar] [CrossRef]
- Christopher, S.A.; Gupta, P. Satellite Remote Sensing of Particulate Matter Air Quality: The Cloud-Cover Problem. J. Air Waste Manag. 2010, 60, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Hodzic, A.; Madronich, S.; Bonn, B.; Massie, S.; Menut, L.; Wiedinmyer, C. Wildfire particulate matter in Europe during summer 2003: Meso-scale modeling of smoke emissions, transport and radiative effects. Atmos. Chem. Phys. 2007, 7, 4043–4064. [Google Scholar] [CrossRef] [Green Version]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Chudnovsky, A.A.; Lee, H.J.; Kostinski, A.; Kotlov, T.; Koutrakis, P. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES). J. Air Waste Manag. Assoc. 2012, 62, 1022–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.H.; Zhang, M.G.; Chen, L.F.; Wang, Z.F.; Su, L.; Ge, C.; Han, X.; Zou, M.M. A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness. Sci. China Earth Sci. 2013, 56, 1422–1433. [Google Scholar] [CrossRef]
- Liu, Y.; Franklin, M.; Kahn, R.; Koutrakis, P. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sens. Environ. 2007, 107, 33–44. [Google Scholar] [CrossRef]
- Chu, D.A.; Szykman, J.; Kondragunta, S. Analysis of the relationship between MODIS aerosol optical depth and PM2.5 in the summertime US. In Proc. SPIE; SPIE Digital Library: San Diego, CA, USA, 2006; Volume 6299, Available online: https://doi.org/10.1117/12.678841 (accessed on 10 May 2018).
- Anselin, L.; Le Gallo, J. Interpolation of Air Quality Measures in Hedonic House Price Models: Spatial Aspects. Spat. Econ. Anal. 2006, 1, 31–52. [Google Scholar] [CrossRef]
- Mercer, L.D.; Szpiro, A.A.; Sheppard, L.; Lindström, J.; Adar, S.D.; Allen, R.W.; Avol, E.L.; Oron, A.P.; Larson, T.; Liu, L.J.S.; et al. Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmos. Environ. 2011, 45, 4412–4420. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Env. Epid. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. Int. J. Health Geogr. 2009, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating ground-level PM2.5 in China using satellite remote sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- Lassman, W.; Ford, B.; Gan, R.W.; Pfister, G.; Magzamen, S.; Fischer, E.V.; Pierce, J.R. Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. GeoHealth 2017, 1, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Burnett, R.T. High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America. Environ. Sci. Technol. 2015, 49, 10482–10491. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Chudnovsky, A.A.; Just, A.C.; Nordio, F.; Koutrakis, P.; Coull, B.A.; Lyapustin, A.; Wang, Y.; Schwartz, J. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmos. Environ. 2014, 95, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 2095. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Zibordi, G.; Chern, J.D.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atmos. 2003, 108, 1–18. [Google Scholar] [CrossRef]
- Kacenelenbogen, M.; Léon, J.F.; Chiapello, I.; Tanré, D. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmos. Chem. Phys. 2006, 6, 4843–4849. [Google Scholar] [CrossRef] [Green Version]
- Pm, G.; Paciorek, C.J.; Moreno-Macias, H. Spatio-temporal Associations Between GOES Aerosol Optical Depth Retrievals and Ground-Level PM2.5. Environ. Sci Technol. 2008, 42, 5800–5806. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Li, X.; Liu, Z.; Lu, H.; Lu, Y.; Mao, Z.; Chen, X.; Li, N.; Ren, M.; et al. A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere 2016, 7, 1–25. [Google Scholar] [CrossRef]
- Chudnovsky, A.A.; Koutrakis, P.; Kloog, I.; Melly, S.; Nordio, F.; Lyapustin, A.; Wang, Y.; Schwartz, J. Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmos. Environ. 2014, 89, 189–198. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; de Hoogh, K. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ. Pollut. 2017, 226, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Air pollutant emissions. 2017. Available online: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html (accessed on 12 June 2018).
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, Q.; Liu, Y.; Geng, G.; He, K. Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements. Atmos. Environ. 2016, 124, 232–242. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Christopher, S.A. Seven year particulate matter air quality assessment from surface and satellite measurements. Atmos. Chem. Phys. 2008, 8, 3311–3324. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, K.D.; Faruqui, S.J.; Smith, S. Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses. Atmos. Environ. 2008, 42, 530–543. [Google Scholar] [CrossRef]
- Lee, H.J.; Coull, B.A.; Bell, M.L.; Koutrakis, P. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 2012, 118, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Schwartz, J.; Koutrakis, P. Analyses of high resolution aerosol data from MODIS satellite: A MAIAC retrieval, southern New England, US. 2013, 87951E. [Google Scholar] [CrossRef]
- Montagne, D.R.; Hoek, G.; Klompmaker, J.O.; Wang, M.; Meliefste, K.; Brunekreef, B. Land Use Regression Models for Ultrafine Particles and Black Carbon Based on Short-Term Monitoring Predict Past Spatial Variation. Environ. Sci. Technol. 2015, 49, 8712–8720. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.D.; Chen, Y.C.; Pan, W.C.; Zeng, Y.T.; Chen, M.J.; Guo, Y.L.; Lung, S.C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.D.; McNeely, E.; Cedeño-Laurent, J.G.; Pan, W.C.; Adamkiewicz, G.; Dominici, F.; Lung, S.C.C.; Su, H.J.; Spengler, J.D. Linking student performance in Massachusetts elementary schools with the “greenness” of school surroundings using remote sensing. PLoS ONE 2014, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Kloog, I.; Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Melly, S.; Coull, B.; Koutrakis, P.; Schwartz, J. Spatiotemporal prediction of fine particulate matter using high resolution satellite images in the southeastern U.S. 2003–2011. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Sampson, P.D.; Richards, M.; Szpiro, A.A.; Bergen, S.; Sheppard, L.; Larson, T.V.; Kaufman, J.D. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos. Environ. 2013, 75, 383–392. [Google Scholar] [CrossRef] [PubMed]
- National Road Network (NRN)—AB, Alberta. Available online: https://open.alberta.ca/opendata/cb1d2fbd-4695-4cac-accd-40db2774f23d (accessed on 11 May 2018).
- National Pollutant Release Inventory (NPRI). Available online: http://www.ec.gc.ca/inrp-npri/default.asp?lang%BCEn&;n%BC4A577BB9-1 (accessed on 12 July 2018).
- DMTI. The Gold Standard Canada’s Most Complete and Accurate Mapping Data. Available online: https://www.dmtispatial.com/ (accessed on 1 July 2018).
- Acker, J.G.; Leptoukh, G. Online Analysis Enhances Use of NASA Earth Science Data. Eos Trans. Am. Geophys. Union 2007, 88, 14. [Google Scholar] [CrossRef]
- Getis, A. A history of the concept of spatial autocrrelation: A geographer’s perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- How Inverse Distance Weighted Interpolation Work. Available online: http://pro.arcgis.com/en/pro-app/help/analysis/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm (accessed on 22 May 2018).
- Weather Spark The Typical Weather Anywhere on Earth. Available online: https://weatherspark.com/ (accessed on 18 August 2018).
- Chaloulakou, A.; Kassomenos, P.; Spyrellis, N.; Demokritou, P.; Koutrakis, P. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos. Environ. 2003, 37, 649–660. [Google Scholar] [CrossRef]
Response Variable | Name | Unit | |
---|---|---|---|
PM2.5 | Particulate Matter 2.5 | µg/m3 | |
Satellite Data | Name | Spatial Resolution | Temporal Resolution |
Vegetation Index | NDVI-30 days | 0.05 degree | Monthly |
Aerosol optical depth (MODIS) | AOD_MODIS | 1 degree | Daily (averaged to study period) |
Aerosol optical depth (OMI) | AOD_OMI | 0.25 degree | Daily (averaged to study period) |
Spatial Variables | Name | Unit | Circular Buffer/Scale |
Distance to the source of fire | Dis | kilometer | - |
Land use: Industrial | LU_ind | count | 5000–10,000 m |
roads | Road | meter | 500–1000 m |
Temporal Predictors | Name | Unit | Resolution |
Relative Humidity | RH | Hourly (averaged to study period) | |
Temperature | Temp | Celsius | Hourly (averaged to study period) |
Wind speed (southwest) | WS | km/h, at 10 m height | Hourly (averaged in southwest direction) |
PM2.5 (µg/m3) | N | Max | Mean | Min | S.D. | Moran’s I | P(I) |
---|---|---|---|---|---|---|---|
Period 1 (Pre-Fire) | 22 | 14 | 6.2 | 3.2 | 2.4 | 0.08 | 0.1 |
Period 2 (During-Fire) | 24 | 51.5 | 19.5 | 6 | 12.9 | 0.55 | 0.00 |
Period 3 (Post-Fire) | 23 | 9.8 | 4.2 | 0.8 | 2.1 | 0.01 | 0.28 |
Predictors | Period 1: Pre-Fire (1–23 August 2015) | Period 2: During-Fire (24–31 August 2015) | Period 3: Post-Fire (1–30 September 2015) | |||||||||
Coefficient | Std. Error | p-Value | Coefficient | Std. Error | p-Value | Coefficient | Std. Error | p-Value | ||||
Intercept | 4.165 | 0.58 | 0.00 | 4.512 | 3.77 | 0.24 | 0.73 | 0.35 | 0.05 | |||
AOD | 7.76 | 2.65 | 0.00 | 18.154 | 3.93 | 0.00 | 6.75 | 4.47 | 0.14 | |||
Index/Test | Adjust/p-Value | Index/Test | Adjust/p Value | Index/Test | Adjust/p Value | |||||||
R2 | 0.29 | 0.26 | 0.50 | 0.47 | 0.13 | 0.05 | ||||||
CV-R2 | 0.25 | - | 0.40 | - | 0.12 | - | ||||||
Moran’s I | 0.09 | 0.05 | 0.05 | 0.07 | −0.03 | 0.37 | ||||||
LMerr | 0.54 | 0.46 | 0.23 | 0.62 | 0.08 | 0.76 | ||||||
RMSE | 1.4 | - | 9 | - | 0.51 | - | ||||||
CV-RMSE | 1.39 | - | 9.8 | - | 0.6 | - | ||||||
AIC | 78 | - | 179 | - | 41 | - |
Predictors | Period 1: Pre-Fire (1–23 August 2015) | Period 2: During-Fire (24–31 August 2015) | Period 3: Post-Fire (1–30 September 2015) | |||||||||
cor 1 (%) | Coefficient | Std. Error | p-Value | cor (%) | Coefficient | Std. Error | p-Value | cor (%) | Coefficient | Std. Error | p-Value | |
Intercept | - | 3.84 | 0.58 | 0.00 | - | 63.38 | 13.08 | 0.00 | - | 1.55 | 0.44 | 0.00 |
AOD | 0.50 | 4.82 | 2.75 | 0.09 | 0.70 | 12.71 | 3.00 | 0.00 | - | - | - | - |
NDVI | - | - | - | - | 0.60 | −32.95 | 9.61 | 0.00 | - | - | - | - |
Distance | - | - | - | - | 0.61 | −5.6 × 10−5 | 0.00 | 0.00 | - | - | - | |
Elevation | - | - | - | - | - | - | - | - | 0.35 | −9.61 × 10−4 | 0.00 | 0.05 |
Road_1km | 0.55 | 6.8 × 10−5 | 0.00 | 0.00 | - | - | - | - | 0.50 | 1.87 × 10−5 | 0.00 | 0.00 |
LU_ind_5km | - | - | - | - | - | - | - | - | 0.51 | 2.9 × 10−2 | 0.01 | 0.08 |
Index/Test | Adjust/p-Value | Index/Test | Adjust/p-Value | Index/Test | Adjust/p-Value | |||||||
R2 | 0.50 | 0.45 | 0.77 | 0.74 | 0.54 | 0.47 | ||||||
CV-R2 | 0.41 | - | 0.71 | - | 0.42 | - | ||||||
Moran’s I | −0.028 | 0.35 | 0.04 | 0.01 | −0.16 | 0.83 | ||||||
LMerr | 0.051 | 0.82 | 0.12 | 0.72 | 1.84 | 0.17 | ||||||
RMSE | 1.17 | - | 6 | 6.8 | 0.36 | - | ||||||
CV-RMSE | 1.34 | - | 7.06 | - | 0.44 | - | ||||||
AIC | 77 | - | 162 | - | 29 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei, M.; Bertazzon, S.; Couloigner, I. Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models. Atmosphere 2018, 9, 335. https://doi.org/10.3390/atmos9090335
Mirzaei M, Bertazzon S, Couloigner I. Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models. Atmosphere. 2018; 9(9):335. https://doi.org/10.3390/atmos9090335
Chicago/Turabian StyleMirzaei, Mojgan, Stefania Bertazzon, and Isabelle Couloigner. 2018. "Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models" Atmosphere 9, no. 9: 335. https://doi.org/10.3390/atmos9090335
APA StyleMirzaei, M., Bertazzon, S., & Couloigner, I. (2018). Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models. Atmosphere, 9(9), 335. https://doi.org/10.3390/atmos9090335