Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Methodologies
2.2.1. Coupled Hydrodynamic Model
1D Hydraulic Model for River Network
2D Shallow Water Model for the Lake
Model Coupling Strategies and Moving Boundary Processing
2.2.2. Impoundment Evaluation of the TGR
3. Results
3.1. Model Calibration and Validation
3.2. Water Exchanges between the Mainstream and the Dongting Lake
3.3. Changes of Water Level in the River-Lake System
3.4. Variation in Lake Volume
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Omer, A.M. Energy, environment and sustainable development. Renew. Sust. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Fang, C.; Bao, C.; Huang, J. Management implications to water resources constraint force on socio-economic system in rapid urbanization: A case study of the Hexi Corridor, NW China. Water Resour. Manag. 2007, 21, 1613–1633. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Huang, K.D. Bayesian Technique for the Selection of Probability Distributions for Frequency Analyses of Hydrometeorological Extremes. Entropy 2018, 20, 117. [Google Scholar] [CrossRef]
- González-Fernández, R.A.; Oviedo-Sanabria, R.E.; Leite da Silva, A.M. Generating capacity reliability assessment of the Itaipu hydroelectric plant via sequential Monte Carlo simulation. In Proceedings of the Power Systems Computation Conference (PSCC), Wroclaw, Poland, 18–22 August 2014; pp. 1–7. [Google Scholar]
- Postel, S.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Tecle, A. Downstream Effects of Damming the Colorado River. Int. J. Lakes Rivers 2017, 10, 7–33. [Google Scholar]
- Mendelssohn, I.A.; Andersen, G.L.; Baltz, D.M.; Caffey, R.H. Oil impacts on coastal wetlands: Implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill. Bioscience 2012, 62, 562–574. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.; Hao, Z.; Li, T. Flood coincidence risk analysis using multivariate copula functions. J. Hydrol. Eng. 2011, 17, 742–755. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.; Zhou, J.; Zhang, J. Copula-based method for multisite monthly and daily streamflow simulation. J. Hydrol. 2015, 528, 369–384. [Google Scholar] [CrossRef]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; van de Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Duc, N.A.; Nguyen, L.T.; Thai, T.H.; Khan, A.; Rautenstrauch, K.; Schmidt, C. Assessing Cumulative Impacts of the Proposed Lower Mekong Basin Hydropower Cascade on the Mekong River Floodplains and Delta–Overview of Integrated Modeling Methods and Results. J. Hydrol. 2018, in press. [Google Scholar]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M. The significance of local water resources captured in small reservoirs for crop production—A global-scale analysis. J. Hydrol. 2010, 384, 264–275. [Google Scholar] [CrossRef]
- Rahel, F.J.; Olden, J.D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 2008, 22, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, S.; Guo, J.; Liu, P. The impact of Three Gorges Reservoir refill operation on water levels in Poyang Lake, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 879–891. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, B. Ecological and Environmental Monitoring After Reservoir Impoundment. In Three Gorges Dam; Springer: Myrtle Beach, SC, USA, 2018; pp. 279–306. [Google Scholar]
- Chen, L.; Singh, V.P. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis. J. Hydrol. 2018, 557, 699–712. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, P.; Dai, L.; Dai, H.; Hu, T. Optimal operation of a multi-reservoir system for environmental water demand of a river-connected lake. Hydrol. Res. 2016, 47, 206–224. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Milliman, J.D.; Xu, K.; Deng, B.; Zhang, X.; Luo, X. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, F.; Murphy, B.R.; Xie, S. Downstream effects of the Three Gorges Dam on larval dispersal, spatial distribution, and growth of the four major Chinese carps call for reprioritizing conservation measures. Can. J. Fish. Aquat. Sci. 2017, 75, 141–151. [Google Scholar] [CrossRef]
- Gao, X.; Lin, P.; Li, M.; Duan, Z.; Liu, H. Impact of the Three Gorges Dam on the spawning stock and natural reproduction of Chinese sturgeon in Changjiang River, China. Chin. J. Oceanol. Limnol. 2016, 34, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dramatic inundation changes of China’s two largest freshwater lakes linked to the Three Gorges Dam. Environ. Sci. Technol. 2013, 47, 9628–9634. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Sun, Z.D.; Opp, C.; Lotz, T.; Jiang, J.H.; Lai, X.J. Hydrological Drought at Dongting Lake: Its Detection, Characterization, and Challenges Associated with Three Gorges Dam in Central Yangtze, China. Water Resour. Manag. 2014, 28, 5377–5388. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Dong, L.; Zhang, J. Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011. Hydrol. Process. 2013, 27, 3981–3993. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, J.; Yang, G.; Lu, X.X. Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River? Hydrol. Process. 2014, 28, 150–160. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Wada, Y. Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain. Water Resour. Res. 2017, 53, 3854–3877. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Zhang, M.; Li, Y.; Zhu, L.; You, X.; Wang, D.; Xu, J. Mechanisms of suspended sediment restoration and bed level compensation in downstream reaches of the Three Gorges Projects (TGP). J. Geogr. Sci. 2017, 27, 463–480. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y.; Fu, R.; Dou, X.; Zhang, E. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quat. Int. 2008, 186, 55–64. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.; Zhou, J.; Zhang, J.; Liu, P. An objective method for partitioning the entire flood season into multiple sub-seasons. J. Hydrol. 2015, 528, 621–630. [Google Scholar] [CrossRef]
- Chen, L.; Guo, S.; Yan, B.; Liu, P.; Fang, B. A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol. Sci. J. 2010, 55, 1264–1280. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, L.; Zhu, Y.; Singh, V.P.; Qu, G.; Guo, X. Multi-objective reservoir operation during flood season considering spillway optimization. J. Hydrol. 2017, 552, 554–563. [Google Scholar] [CrossRef]
- Three Gorges Corporation. Available online: http://www.ctg.com.cn/ (accessed on 15 May 2018).
- Danish Hydraulic Institute (DHI). A Modelling System for Rivers and Channels. In Reference Manual; DHI Water & Environment: Aarhus N, Denmark, 2011. [Google Scholar]
- Danish Hydraulic Institute (DHI). MIKE 21 Flow Model: Hydrodynamic Module Scientific Documentation. In User Mannual; DHI: Horsholm, Denmark, 2009. [Google Scholar]
- DHI. MIKE FLOOD 1D-2D Modelling. In User Manual; DHI: Horsholm, Denmark, 2007; pp. 5–20. [Google Scholar]
- Zhao, D.; Shen, H.; Tabios, G., III; Lai, J.; Tan, W. Finite-volume two-dimensional unsteady-flow model for river basins. J. Hydraul. Eng. 1994, 120, 863–883. [Google Scholar] [CrossRef]
- Sleigh, P.; Gaskell, P.; Berzins, M.; Wright, N. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Comput. Fludids 1998, 27, 479–508. [Google Scholar] [CrossRef]
- Cunge, J.A. On the subject of a flood propagation computation method (Musklngum method). J. Hydraul. Res. 1969, 7, 205–230. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Singh, V.P.; Cao, H.; Wang, D. Determination of the distribution of flood forecasting error. Nat. Hazards 2015, 75, 1389–1402. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Lu, W.; Zhang, J.; Zhou, J.; Guo, S. Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation. J. Hydrol. 2016, 540, 712–726. [Google Scholar] [CrossRef]
- Jiang, J.H.; Lai, X.J.; Huang, Q. The characteristics of flood responses to the restoration of polders on Dongting Lake, China. Hydrol. Sci. J. 2007, 52, 671–685. [Google Scholar]
- Dai, M.L.; Wang, J.; Zhang, M.B.; Chen, X. Impact of the Three Gorges Project operation on the water exchange between Dongting Lake and the Yangtze River. Int. J. Sediment. Res. 2017, 32, 506–514. [Google Scholar] [CrossRef]
Series No. | Station Name | Location | Catchment Area (km2) | Parameters Gauged | |
---|---|---|---|---|---|
Longitude | Latitude | ||||
1 | Yichang | 111°17′ E | 30°42′ N | 1,005,501.00 | water level, discharge |
2 | Zhicheng | 111°30′ E | 30°30′ N | 1,024,131.00 | |
3 | Shashi | 112°13′ E | 30°18′ N | 1,028,415.00 | |
4 | Jianli | 112°53′ E | 29°49′ N | 1,033,274.00 | |
5 | Chenglingji | 113°08′ E | 29°25′ N | 262,344.00 | |
6 | Luoshan | 113°22′ E | 29°40′ N | 1,294,911.00 | |
7 | Taojiang | 112°06′ E | 28°55′ N | 25,788.00 | |
8 | Taoyuan | 111°29′ E | 28°54′ N | 90,530.00 | |
9 | Shimen | 111°23′ E | 29°37′ N | 17,942.00 | |
10 | Nanzui | 112°18′ E | 29°03′ N | - | water level |
11 | Heyehu | 112°54′ E | 28°52′N | - | |
12 | Shawan | 112°18′ E | 28°55′ N | - | |
13 | Lujiao | 113°07′ E | 29°08′ N | - | |
14 | Yingtian | 112°55′ E | 28°51′ N | - | |
15 | Xinjiangkou | 111°47′ E | 30°18′ N | - | water level, discharge |
16 | Shadaoguan | 111°55′ E | 30°18′ N | - | |
17 | Mituosi | 112°07′ E | 30°22′ N | - | |
18 | Kangjiagang | 112°18′ E | 29°73′ N | - | |
19 | Guanjiapu | 112°19′ E | 29°73′ N | - |
Subarea | Deep Channels | Shoals in the Lake | Point Bars in Rivers |
---|---|---|---|
Lake area | 0.021~0.034 | 0.032~0.059 | - |
Mainstream | 0.018~0.035 | - | 0.025~0.046 |
Tributaries | 0.019~0.033 | - | 0.023~0.042 |
No. | Stations | 2008 | 2011 | ||||||
---|---|---|---|---|---|---|---|---|---|
Discharge (m3/s) | Elevation (m) | Discharge (m3/s) | Elevation (m) | ||||||
NSE | RMSE | NSE | RMSE | NSE | RMSE | NSE | RMSE | ||
1 | Zhicheng | 0.992 | 0.132 | 0.993 | 0.004 | 0.991 | 0.134 | 0.988 | 0.004 |
2 | Shashi | 0.986 | 0.121 | 0.988 | 0.011 | 0.984 | 0.124 | 0.979 | 0.007 |
3 | Jianli | 0.989 | 0.136 | 0.969 | 0.016 | 0.99 | 0.129 | 0.984 | 0.012 |
4 | Nanzui | - | - | 0.975 | 0.005 | - | - | 0.972 | 0.01 |
5 | Heyehu | - | - | 0.984 | 0.014 | - | - | 0.982 | 0.013 |
6 | Chenglingji | 0.896 | 0.152 | 0.991 | 0.014 | 0.891 | 0.161 | 0.99 | 0.011 |
7 | Shadaoguan | 0.931 | 0.156 | 0.961 | 0.018 | 0.932 | 0.071 | 0.984 | 0.019 |
8 | Xinjiangkou | 0.947 | 0.142 | 0.987 | 0.021 | 0.939 | 0.069 | 0.991 | 0.023 |
9 | Mituosi | 0.968 | 0.233 | 0.982 | 0.016 | 0.972 | 0.105 | 0.976 | 0.014 |
10 | Kangjiagang | 0.927 | 0.152 | 0.914 | 0.023 | 0.935 | 0.138 | 0.913 | 0.025 |
11 | Guanjiapu | 0.935 | 0.131 | 0.905 | 0.017 | 0.929 | 0.124 | 0.901 | 0.019 |
Runoff Processes | Diversion Ratio | Monthly Mean Discharge (m3/s) | |||||
---|---|---|---|---|---|---|---|
Dec. | Jan. | Feb. | Mar. | Apr. | Three Outlets | Zhicheng | |
TGR, R1 | 0.44 | 0.48 | 0.38 | 0.45 | 2.72 | 84.7 | 6210 |
No TGR, R2 | 0.36 | 0.2 | 0.04 | 0.19 | 2.16 | 56.7 | 5590 |
R1 – R2 | 0.08 | 0.28 | 0.34 | 0.26 | 0.56 | 28 | 620 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Feng, L.; Chen, L.; Wang, D.; Dai, M.; Xu, W.; Yan, T. Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China. Water 2018, 10, 1011. https://doi.org/10.3390/w10081011
Zhang J, Feng L, Chen L, Wang D, Dai M, Xu W, Yan T. Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China. Water. 2018; 10(8):1011. https://doi.org/10.3390/w10081011
Chicago/Turabian StyleZhang, Junhong, Luojie Feng, Lu Chen, Dangwei Wang, Minglong Dai, Wensheng Xu, and Tao Yan. 2018. "Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China" Water 10, no. 8: 1011. https://doi.org/10.3390/w10081011
APA StyleZhang, J., Feng, L., Chen, L., Wang, D., Dai, M., Xu, W., & Yan, T. (2018). Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China. Water, 10(8), 1011. https://doi.org/10.3390/w10081011