Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization
Abstract
:1. Introduction
1.1. Background
1.2. Research Persuasion
2. Materials and Methods
2.1. Sampling and Analytical Methods
2.2. Evaluation of Temperature Effects
2.3. Evaluation of Turbidity Effects
2.4. Evaluation of Inner Filter Effects
2.5. Data Analysis and Sequential fDOM Compensation Procedure
2.6. Linking fDOM with DOM Properties: Experiments
2.7. Linking fDOM with DOM Properties: Data Analysis
3. Results
3.1. Temperature Effects on fDOM Measurements
3.2. Turbidity Effects on fDOM Measurements
3.3. Inner Filter Effect on fDOM Measurements
3.4. Sequential Model Validation
- RMSE = 3.38 RFU for the linear multivariate model,
- RMSE = 2.73 RFU for the non-linear multivariate model, and
- RMSE = 0.57 RFU for the sequential model
3.5. EEM vs. fDOM Signal
3.6. Molecular Weight vs. fDOM Signal
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Sampling and Analytical Methods
References
- Zhao, Z.-Y.; Gu, J.-D.; Li, H.-B.; Li, X.-Y.; Leung, K.M.-Y. Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment plant in southern China. J. Hazard. Mater. 2009, 172, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Lee, W.M.; Lee, S.; Choi, J.; Maeng, S.K. Characterization of organic precursors in DBP formation and AOC in urban surface water and their fate during managed aquifer recharge. Water Res. 2017, 123, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Sharp, E.L.; Jarvis, P.; Parsons, S.A.; Jefferson, B. Impact of fractional character on the coagulation of nom. Colloids Surf. A 2006, 286, 104–111. [Google Scholar] [CrossRef]
- Henderson, R.K.; Baker, A.; Murphy, K.R.; Hambly, A.; Stuetz, R.M.; Khan, S.J. Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res. 2009, 43, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Bertone, E.; Stewart, R.A.; Zhang, H.; Bartkow, M.; Hacker, C. An autonomous decision support system for manganese forecasting in subtropical water reservoirs. Environ. Model. Softw. 2015, 73, 133–147. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Zhang, H.; Veal, C. Data-driven recursive input–output multivariate statistical forecasting model: Case of do concentration prediction in Advancetown Lake, Australia. J. Hydroinf. 2015, 17, 817–833. [Google Scholar] [CrossRef]
- Carstea, E.M. Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems. In Water Pollution; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Piana, M.J.; Zahir, K.O. Investigation of metal ions binding of humic substances using fluorescence emission and synchronous-scan spectroscopy. J. Environ. Sci. Health Part B 2000, 35, 87–102. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—A review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- Spencer, R.G.M.; Bolton, L.; Baker, A. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Res. 2007, 41, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Saraceno, J.F.; Shanley, J.B.; Downing, B.D.; Pellerin, B.A. Clearing the waters: Evaluating the need for site-specific field fluorescence corrections based on turbidity measurements. Limnol. Oceanogr. Methods 2017. [Google Scholar] [CrossRef]
- Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.; Saraceno, J.F.; Kraus, T.E.C. Seeing the light: The effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. Limnol. Oceanogr. Methods 2012, 10, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zeng, L.-H.; Li, D.-L. A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum. Appl. Spectrosc. Rev. 2017, 52, 883–908. [Google Scholar] [CrossRef]
- Baker, A. Thermal fluorescence quenching properties of dissolved organic matter. Water Res. 2005, 39, 4405–4412. [Google Scholar] [CrossRef] [PubMed]
- Carstea, E.M.; Baker, A.; Bieroza, M.; Reynolds, D.M.; Bridgeman, J. Characterisation of dissolved organic matter fluorescence properties by parafac analysis and thermal quenching. Water Res. 2014, 61, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Coble, P.G.; Lead, J.; Baker, A.; Reynolds, D.M.; Spencer, R.G. Aquatic Organic Matter Fluorescence; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Khamis, K.; Sorensen, J.; Bradley, C.; Hannah, D.; Lapworth, D.; Stevens, R. In situ tryptophan-like fluorometers: Assessing turbidity and temperature effects for freshwater applications. Environ. Sci. Process. Impacts 2015, 17, 740–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamis, K.; Bradley, C.; Stevens, R.; Hannah, D.M. Continuous field estimation of dissolved organic carbon concentration and biochemical oxygen demand using dual-wavelength fluorescence, turbidity and temperature. Hydrol. Process. 2017, 31, 540–555. [Google Scholar] [CrossRef]
- Shutova, Y.; Baker, A.; Bridgeman, J.; Henderson, R. On-line monitoring of organic matter concentrations and character in drinking water treatment systems using fluorescence spectroscopy. Environ. Sci. Water Res. Technol. 2016, 2, 749–760. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Cory, R.M.; Miller, M.P.; McKnight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Methods. 2010, 8, 67–78. [Google Scholar] [Green Version]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.M.; Kraus, T.E.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- Shutova, Y.; Baker, A.; Bridgeman, J.; Henderson, R.K. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From parafac analysis to online monitoring wavelengths. Water Res. 2014, 54, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Peleato, N.M.; Andrews, R.C. Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids. J. Environ. Sci. 2015, 27, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Watras, C.J.; Hanson, P.C.; Stacy, T.L.; Morrison, K.M.; Mather, J.; Hu, Y.H.; Milewski, P. A temperature compensation method for cdom fluorescence sensors in freshwater. Limnol. Oceanogr. Method. 2011, 9, 296–301. [Google Scholar] [CrossRef]
- Lee, E.-J.; Yoo, G.-Y.; Jeong, Y.; Kim, K.-U.; Park, J.-H.; Oh, N.-H. Comparison of UV–VIS and fdom sensors for in situ monitoring of stream doc concentrations. Biogeosciences 2015, 12, 3109–3118. [Google Scholar] [CrossRef]
- Serkiz, S.M.; Perdue, E.M. Isolation of dissolved organic matter from the Suwannee River using reverse osmosis. Water Res. 1990, 24, 911–916. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Spiess, A.-N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Awad, J.; van Leeuwen, J.; Chow, C.W.; Smernik, R.J.; Anderson, S.J.; Cox, J.W. Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment. Environ. Pollut. 2017, 220, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.W.; Fabris, R.; Leeuwen, J.v.; Wang, D.; Drikas, M. Assessing natural organic matter treatability using high performance size exclusion chromatography. Environ. Sci. Technol. 2008, 42, 6683–6689. [Google Scholar] [CrossRef] [PubMed]
- Aslam, Z.; Chow, C.W.K.; Murshed, F.; van Leeuwen, J.A.; Drikas, M.; Wang, D. Variation in character and treatability of organics in river water: An assessment by HPAC and alum coagulation. Sep. Purif. Technol. 2013, 120, 162–171. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Korak, J.A.; Dotson, A.D.; Summers, R.S.; Rosario-Ortiz, F.L. Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter. Water Res. 2014, 49, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the gironde estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Her, N.; Amy, G.; Foss, D.; Cho, J. Variations of molecular weight estimation by hp-size exclusion chromatography with uva versus online doc detection. Environ. Sci. Technol. 2002, 36, 3393–3399. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.-P.; Aiken, G.; O’Loughlin, E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environl. Sci. Technol. 1994, 28, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Romera-Castillo, C.; Chen, M.; Yamashita, Y.; Jaffé, R. Fluorescence characteristics of size-fractionated dissolved organic matter: Implications for a molecular assembly based structure? Water Res. 2014, 55, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Martin-Mousset, B.; Croue, J.; Lefebvre, E.; Legube, B. Distribution and characterization of dissolved organic matter of surface waters. Water Res. 1997, 3, 541–553. [Google Scholar] [CrossRef]
- Fabris, R.; Chow, C.W.; Drikas, M.; Eikebrokk, B. Comparison of nom character in selected Australian and Norwegian drinking waters. Water Res. 2008, 42, 4188–4196. [Google Scholar] [CrossRef] [PubMed]
- Swietlik, J.; Sikorska, E. Characterization of natural organic matter fractions by high pressure size-exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Pol. J. Environ. Stud. 2006, 15, 145. [Google Scholar]
- Watanabe, A.; Moroi, K.; Sato, H.; Tsutsuki, K.; Maie, N.; Melling, L.; Jaffé, R. Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates. Chemosphere 2012, 88, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Her, N.; Amy, G.; McKnight, D.; Sohn, J.; Yoon, Y. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Res. 2003, 37, 4295–4303. [Google Scholar] [CrossRef]
- Covert, J.S.; Moran, M.A. Molecular characterization of estuarine bacterial communities that use high-and low-molecular weight fractions of dissolved organic carbon. Aquat. Microb. Ecol. 2001, 25, 127–139. [Google Scholar] [CrossRef]
- Kaiser, K.; Benner, R. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Mar. Chem. 2009, 113, 63–77. [Google Scholar] [CrossRef]
- Xing, L.; Fabris, R.; Chow, C.W.; van Leeuwen, J.; Drikas, M.; Wang, D. Prediction of DOM removal of low specific UV absorbance surface waters using HPSEC combined with peak fitting. J. Environ. Sci. 2012, 24, 1174–1180. [Google Scholar] [CrossRef] [Green Version]
- Saadi, I.; Borisover, M.; Armon, R.; Laor, Y. Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere 2006, 63, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Edzwald, J.K.; Kaminski, G.S. A practical method for water plants to select coagulant dosing. J. N. Engl. Water Work. Assoc. 2009, 123, 15. [Google Scholar]
- Wehry, E.L. Sensitized photoaquation of thiocyanatopentaamminechromium(iii) and chloropentaamminechromium(iii) ions by excited singlet riboflavine. J. Am. Chem. Soc. 1973, 95, 2137–2141. [Google Scholar] [CrossRef]
- Tong, H. Threshold Models in Non-Linear Time Series Analysis; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Yao, M.; Nan, J.; Chen, T. Effect of particle size distribution on turbidity under various water quality levels during flocculation processes. Desalination 2014, 354, 116–124. [Google Scholar] [CrossRef]
- Li, W.-T.; Xu, Z.-X.; Li, A.-M.; Wu, W.; Zhou, Q.; Wang, J.-N. HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis. Water Res. 2013, 47, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Cuss, C.W.; Guéguen, C. Relationships between molecular weight and fluorescence properties for size-fractionated dissolved organic matter from fresh and aged sources. Water Res. 2015, 68, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cao, J.; Meng, F. Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching. Water Res. 2015, 68, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Karanfil, T.; Erdogan, I.; Schlautman, M.A. Selecting filter membranes for measuring DOC and UV. J. Am. Water Works Assoc. 2003, 95, 86–100. [Google Scholar] [CrossRef]
Parameter | P1 | P2 | SMP | FA | HA | DOC | UV254 | fDOM | tot Spectrum abs | SUVA | fDOM/DOC |
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 0.23 | 0.94 | 0.77 | 0.98 | 0.86 | 0.82 | 0.98 | 0.83 | 0.60 | 0.94 | |
P2 | 0.23 | 0.42 | 0.70 | 0.35 | 0.60 | 0.61 | 0.36 | 0.61 | 0.74 | 0.08 | |
SMP | 0.94 | 0.42 | 0.89 | 0.96 | 0.94 | 0.88 | 0.96 | 0.89 | 0.57 | 0.77 | |
FA | 0.77 | 0.70 | 0.89 | 0.87 | 0.99 | 0.98 | 0.88 | 0.99 | 0.85 | 0.58 | |
HA | 0.98 | 0.35 | 0.96 | 0.87 | 0.94 | 0.92 | 0.99 | 0.92 | 0.64 | 0.88 | |
DOC | 0.86 | 0.60 | 0.94 | 0.99 | 0.94 | 0.99 | 0.94 | 0.99 | 0.80 | 0.68 | |
UV254 | 0.82 | 0.61 | 0.88 | 0.98 | 0.92 | 0.99 | 0.92 | 0.99 | 0.87 | 0.66 | |
fDOM | 0.98 | 0.36 | 0.96 | 0.88 | 0.99 | 0.94 | 0.92 | 0.93 | 0.65 | 0.87 | |
tot spectrum abs | 0.83 | 0.61 | 0.89 | 0.99 | 0.92 | 0.99 | 0.99 | 0.93 | 0.09 | 0.76 | |
SUVA | 0.60 | 0.74 | 0.57 | 0.85 | 0.64 | 0.80 | 0.87 | 0.65 | 0.09 | 0.38 | |
fDOM/DOC | 0.94 | 0.08 | 0.78 | 0.58 | 0.88 | 0.68 | 0.66 | 0.87 | 0.76 | 0.38 |
Parameter | >1500 Da | 500 Da–1500 Da | <500 Da | <1000 Da | <680 Da | Mwt-UV |
---|---|---|---|---|---|---|
DOC | 0.857 | 0.9142 | 0.7223 | 0.8266 | 0.8167 | 0.8057 |
UV254 | 0.8694 | 0.9531 | 0.71 | 0.8342 | 0.8219 | 0.874 |
fDOM | 0.9588 | 0.9263 | 0.9001 | 0.9498 | 0.9468 | 0.8305 |
tot spectrum abs | 0.584 | 0.4052 | 0.7344 | 0.6292 | 0.6427 | 0.4501 |
SUVA | 0.6463 | 0.8343 | 0.4271 | 0.5946 | 0.5757 | 0.8309 |
fDOM/DOC | 0.9279 | 0.7789 | 0.9975 | 0.9529 | 0.9607 | 0.7334 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Oliveira, G.F.; Bertone, E.; Stewart, R.A.; Awad, J.; Holland, A.; O’Halloran, K.; Bird, S. Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization. Water 2018, 10, 1146. https://doi.org/10.3390/w10091146
De Oliveira GF, Bertone E, Stewart RA, Awad J, Holland A, O’Halloran K, Bird S. Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization. Water. 2018; 10(9):1146. https://doi.org/10.3390/w10091146
Chicago/Turabian StyleDe Oliveira, Guilherme F., Edoardo Bertone, Rodney A. Stewart, John Awad, Aleicia Holland, Kelvin O’Halloran, and Steve Bird. 2018. "Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization" Water 10, no. 9: 1146. https://doi.org/10.3390/w10091146
APA StyleDe Oliveira, G. F., Bertone, E., Stewart, R. A., Awad, J., Holland, A., O’Halloran, K., & Bird, S. (2018). Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization. Water, 10(9), 1146. https://doi.org/10.3390/w10091146