Adsorption of Aclonifen, Alachlor, Cd and Cu onto Natural River Suspended Matter in the Context of Multi-Pollutions: Influence of Contaminant Co-Presence and Order of Input into the Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Strategy
2.3. Sample Treatment and Analyses
2.4. Experimental Protocol
2.4.1. Choice of Pollutants and Spiking Solutions
2.4.2. Analyses
- -
- Pollutants in the dissolved phase:
- -
- Pollutants in the particulate phase:
2.4.3. Preliminary Experiments
- -
- Influence of the time of contact-adsorption kinetics
- -
- Influence of the suspended sediment load
- -
- Influence of the initial concentration of pollutant-sorption isotherms
2.4.4. Co-Presence Experiments
2.5. Statistical Analysis
3. Results and Discussion
3.1. Water and SPM Characterization
3.2. Adsorption Kinetics
3.3. Influence of the Suspended Matter Load
3.4. Influence of the Initial Pollutant Concentration
3.5. Co-Adsorption of Pollutants on Suspended Particulate Matter
3.5.1. Aclonifen (Aclo)
3.5.2. Alachlor (Ala)
3.5.3. Cd and Cu
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morillo, E.; Undabeytia, T.; Maqueda, C.; Ramos, A. Glyphosate adsorption on soils of different characteristics: Influence of copper addition. Chemosphere 2000, 40, 103–107. [Google Scholar] [CrossRef]
- Morillo, E.; Undabeytia, T.; Maqueda, C.; Ramos, A. The effect of dissolved glyphosate upon the sorption of copper by three selected soils. Chemosphere 2002, 47, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.-M.; Wang, Y.-J.; Cang, L.; Hao, X.-Z.; Luo, X.-S. Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. Chemosphere 2004, 57, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, Q.; Wang, X.-L.; Dong, D.-M.; Wang, A. Synergetic and antagonistic effects of cadmium on adsorption of atrazine on surficial sediments. Chem. Res. Chin. Univ. 2009, 25, 155–160. [Google Scholar]
- Maqueda, C.; Undabeytia, T.; Morillo, E. Retention and release of copper on montmorillonite as affected by the presence of a pesticide. J. Agric. Food Chem. 1998, 46, 1200–1204. [Google Scholar] [CrossRef]
- Pei, Z.; Shan, X.; Wen, B.; Zhang, S.; Yan, L.; Khan, S.U. Effect of copper on the adsorption of p-nitrophenol onto soils. Environ. Pollut. 2006, 139, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalah, J.O.; Njogu, S.N.; Wandiga, S.O. The Effects of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ Ions on Pesticide Adsorption and Mobility in a Tropical Soil. Bull. Environ. Contam. Toxicol. 2009, 83, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Morillo, E.; Undabeytia, T.; Maqueda, C. Adsorption of glyphosate on the clay mineral montmorillonite: Effect of Cu (II) in solution and adsorbed on the mineral. Environ. Sci. Technol. 1997, 31, 3588–3592. [Google Scholar] [CrossRef] [Green Version]
- Erto, A.; Di Natale, F.; Musmarra, D.; Lancia, A. Modeling of single and competitive adsorption of cadmium and zinc onto activated carbon. Adsorption 2015, 21, 611–621. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Removal of Cd (II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives. J. Hazard. Mater. 2006, 128, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Macary, F.; Morin, S.; Probst, J.-L.; Saudubray, F. A multi-scale method to assess pesticide contamination risks in agricultural watersheds. Ecol. Indic. 2014, 36, 624–639. [Google Scholar] [CrossRef] [Green Version]
- El Azzi, D.; Probst, J.-L.; Teisserenc, R.; Merlina, G.; Baqué, D.; Julien, F.; Payre-Suc, V.; Guiresse, M. Trace Element and Pesticide Dynamics During a Flood Event in the Save Agricultural Watershed: Soil-River Transfer Pathways and Controlling Factors. Water Air Soil Pollut. 2016, 227, 442. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Wu, X.; Gui, W.; Zhu, G. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. J. Hazard. Mater. 2010, 178, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Jin, X.; Lu, X.-Q.; Chen, Z. Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination 2010, 252, 33–39. [Google Scholar] [CrossRef]
- Garnier, J.-M.; Ciffroy, P.; Benyahya, L. Implications of short and long term (30 days) sorption on the desorption kinetic of trace metals (Cd, Zn, Co, Mn, Fe, Ag, Cs) associated with river suspended matter. Sci. Total Environ. 2006, 366, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Probst, J.-L.; Nkamdjou, S. Estimation of the surface runoff and its suspended load in some major world river basins. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 1989, 3, 357–363. [Google Scholar]
- Perrin, A.-S.; Probst, A.; Probst, J.-L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales. Geochim. Cosmochim. Acta 2008, 72, 3105–3123. [Google Scholar] [CrossRef] [Green Version]
- Inamdar, S.P.; O’leary, N.; Mitchell, M.J.; Riley, J.T. The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA. Hydrol. Process. 2006, 20, 3423–3439. [Google Scholar] [CrossRef]
- Syvitski, J.P. Supply and flux of sediment along hydrological pathways: Research for the 21st century. Glob. Planet. Chang. 2003, 39, 1–11. [Google Scholar] [CrossRef]
- Wu, Q.; Riise, G.; Lundekvam, H.; Mulder, J.; Haugen, L.E. Influences of suspended particles on the runoff of pesticides from an agricultural field at Askim, SE-Norway. Environ. Geochem. Health 2004, 26, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Probst, J.L. Hydrologie du Bassin de la Garonne. Modèle de Mélanges. Bilan de l’érosion. Exportation des Phosphates et des Nitrates; Université Paul Sabatier: Toulouse, France, 1983; Volume 148. [Google Scholar]
- Probst, J.-L.; Bazerbachi, A. Transport en solution et en suspension par la Garonne supérieure. Sci. Geol. Bull. 1986, 39, 79–98. [Google Scholar] [CrossRef]
- Etchanchu, D.; Probst, J.-L. Erosion et transport de matières en suspension dans un bassin versant en région agricole. Méthode de mesure du ruissellement superficiel, de sa charge et des deux composantes du transport solide dans un cours d’eau. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 1986, 302, 1063–1068. [Google Scholar]
- Olesen, T.; Moldrup, P.; Henriksen, K.; Petersen, L.W. Modeling diffusion and reaction in soils: IV. New models for predicting ion diffusivity. Soil Sci. 1996, 161, 633–645. [Google Scholar] [CrossRef]
- Macht, F.; Eusterhues, K.; Pronk, G.J.; Totsche, K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N 2) and-liquid (EGME) adsorption methods. Appl. Clay Sci. 2011, 53, 20–26. [Google Scholar] [CrossRef]
- Morel, R. Les Sols Cultivés, 2nd ed.; Lavoisier: Paris, France, 1996. [Google Scholar]
- Balakrishna, K.; Probst, J.-L. Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India. Biogeochemistry 2005, 73, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Millward, G.E.; Liu, Y.P. Modelling metal desorption kinetics in estuaries. Sci. Total Environ. 2003, 314, 613–623. [Google Scholar] [CrossRef]
- Seco, A.; Marzal, P.; Gabaldón, C.; Ferrer, J. Adsorption of heavy metals from aqueous solutions onto activated carbon in single Cu and Ni systems and in binary Cu–Ni, Cu–Cd and Cu–Zn systems. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 1997, 68, 23–30. [Google Scholar] [CrossRef]
- Lazarević, S.; Janković-Častvan, I.; Jovanović, D.; Milonjić, S.; Janaćković, D.; Petrović, R. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl. Clay Sci. 2007, 37, 47–57. [Google Scholar] [CrossRef]
- Patterson, J.W.; Haas, C.N.; Vamos, R.J.; Cooney, E. Kinetics of Cadium and Copper Hydrolysis. Water Sci. Technol. 1987, 19, 1021–1027. [Google Scholar] [CrossRef]
- Gao, J.P.; Maguhn, J.; Spitzauer, P.; Kettrup, A. Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). II: Competitive adsorption, desorption of aged residues and effect of dissolved organic carbon. Water Res. 1998, 32, 2089–2094. [Google Scholar] [CrossRef]
- Martins, J.M.; Mermoud, A. Sorption and degradation of four nitroaromatic herbicides in mono and multi-solute saturated/unsaturated soil batch systems. J. Contam. Hydrol. 1998, 33, 187–210. [Google Scholar] [CrossRef]
- Gouy, V.; Dur, J.-C.; Calvet, R.; Belamie, R.; Chaplain, V. Influence of adsorption–desorption phenomena on pesticide run-off from soil using simulated rainfall. Pestic. Sci. 1999, 55, 175–182. [Google Scholar] [CrossRef]
- Rao, K.S.; Mohapatra, M.; Anand, S.; Venkateswarlu, P. Review on cadmium removal from aqueous solutions. Int. J. Eng. Sci. Technol. 2010, 2, 81–103. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Namasivayam, C. Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd (II) from aqueous solution. Adv. Environ. Res. 2003, 7, 471–478. [Google Scholar] [CrossRef]
- Argun, M.E.; Dursun, S.; Ozdemir, C.; Karatas, M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater. 2007, 141, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Boivin, A.; Cherrier, R.; Schiavon, M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 2005, 61, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Nemeth-Konda, L.; Füleky, G.; Morovjan, G.; Csokan, P. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere 2002, 48, 545–552. [Google Scholar] [CrossRef]
- Johnson, A.C.; White, C.; Besien, T.J.; Jürgens, M.D. The sorption potential of octylphenol, a xenobiotic oestrogen, to suspended and bed-sediments collected from industrial and rural reaches of three English rivers. Sci. Total Environ. 1998, 210, 271–282. [Google Scholar] [CrossRef]
- Kwon, J.-S.; Yun, S.-T.; Lee, J.-H.; Kim, S.-O.; Jo, H.Y. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. J. Hazard. Mater. 2010, 174, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Dong, D. Sorption of pentachlorophenol on surficial sediments: The roles of metal oxides and organic materials with co-existed copper present. Chemosphere 2008, 73, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, K.; Gao, B.; Zhang, G.; Liu, X.; Zhao, Y. Adsorption of tetracycline on soil and sediment: Effects of pH and the presence of Cu(II). J. Hazard. Mater. 2011, 190, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Ni, J.; Sun, W.; Borthwick, A.G.L. Role of dissolved organic carbon in the cosorption of copper and phthalate esters onto Yellow River sediments. Chemosphere 2007, 69, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, B.; Shao, J.; Yang, Q.; Liu, Y.; Cai, W. Influence of the presence of heavy metals and surface-active compounds on the sorption of bisphenol A to sediment. Chemosphere 2007, 68, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Serpaud, B.; Al-Shukry, R.; Casteignau, M.; Matejka, G. Adsorption des métaux lourds (Cu, Zn, Cd et Pb) par les sédiments superficiels d’un cours d’eau: Rôle du pH, de la température et de la composition du sédiment. Rev. Sci. Eau 1994, 7, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Bur, T.; Crouau, Y.; Bianco, A.; Gandois, L.; Probst, A. Toxicity of Pb and of Pb/Cd combination on the springtail Folsomia candida in natural soils: Reproduction, growth and bioaccumulation as indicators. Sci. Total Environ. 2012, 414, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokrovsky, O.S.; Viers, J.; Emnova, E.E.; Kompantseva, E.I.; Freydier, R. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy (hydr) oxides: Possible structural control. Geochim. Cosmochim. Acta 2008, 72, 1742–1757. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Dousset, S.; Guichard, N.; Baveye, P.; Andreux, F. Diuron mobility through vineyard soils contaminated with copper. Environ. Pollut. 2005, 138, 250–259. [Google Scholar] [CrossRef] [PubMed]
Aclonifen | Alachlor | Cd | Cu |
---|---|---|---|
1 | 2 | - | - |
1 | 2 | 3 | - |
1 | 2 | - | 3 |
1 | - | 2 | |
1 | - | - | 2 |
2 | 1 | - | - |
- | 1 | 2 | - |
- | 1 | - | 2 |
2 | 1 | 3 | - |
2 | 1 | - | 3 |
1 | 1 | - | - |
1 | 1 | 2 | - |
1 | 1 | - | 2 |
2 | - | 1 | - |
- | 2 | 1 | - |
- | - | 1 | 2 |
3 | - | 1 | 2 |
- | 3 | 1 | 2 |
2 | - | - | 1 |
- | 2 | - | 1 |
- | - | 2 | 1 |
3 | - | 2 | 1 |
- | 3 | 2 | 1 |
- | - | 1 | 1 |
2 | - | 1 | 1 |
- | 2 | 1 | 1 |
1 | 1 | 1 | 1 |
Water Characteristics | Value | Method Used |
---|---|---|
pH | 8.1 | On-site Measurement, WTW multi parameter tool (pH/Cond 340i/SET, Weilheim, Germany). |
Conductivity (dS m−1) | 0.247 | |
Alkalinity (mgHCO3- L−1) | 157.60 | Acid Titration to a final pH of 3.0. |
DOC (mg L−1) | 7.61 | Shimadzu TOC 5000 Analyzer (Shimadzu Corporation, Tokyo, Japan; limit of quantification 0.14 mg L−1 and uncertainty of 2%). |
SPM (mg L−1) | 726 | Continuous-flow ultracentrifugation (Beckman Coulter, Indianapolis, IN, USA; 700 mL/min; 17,000 RPM) at 0.22 μm. |
Ca (mg L−1) | 51.20 | Inductively coupled plasmaoptic emission spectrometry (ICP-OES Thermo IRIS INTREPID II XDL, Thermo Fischer Scientific Inc., Waltham, MA, USA). Typical limits of quantification were between 0.5 and 0.3 mg L−1 for Na+ and K+ and between 0.07 and 0.03 mg L−1 for Ca2+ and Mg2+. |
K (mg L−1) | 4.18 | |
Mg (mg L−1) | 6.49 | |
Na (mg L−1) | 6.60 | |
Cl (mg L−1) | 15.81 | Dionex 4000I series Ion chromatography System (Dionex Corporation, Sunnyvale, CA, USA). Typical limit of quantification was 0.1 mg L−1. |
NO3 (mg L−1) | 8.53 | |
PO4 (mg L−1) | 0.03 | |
SO4 (mg L−1) | 5.20 | |
Cd (µg L−1) | 0.01 ± 0.00 | Inductively coupled plasma quadrupole mass spectrometry (ICP-Q-MS Agilent 7500ce, Agilent Technologies, Santa Clara, CA, USA) equipped with a collision cell He. Typical detection limits are between 1 and 100 ng L−1 and the external precision is ±5%. |
Cu (µg L−1) | 3.06 ± 0.09 | |
Aclonifen (µg L−1) | 0.081 | GC-MS: Gas chromatography column from Zebra ZB-5MS 30 m, 0.25 mm i.d., and 0.25 μm film from Phenomenex® (Torrance, CA, USA) with Thermo Fisher Scientific (Waltham, MA, USA) Trace GC 2000 coupled with a DSQ II mass detector. The detection limit, based on a signal-to-noise ratio of 3, was estimated to 1 to 3 ng L−1 depending on the molecule. |
Alachlor (µg L−1) | 0.002 |
Suspended Matter Characteristics | Value | Method Used |
---|---|---|
Particulate Organic Carbon (mg g−1) | 22.127 | CarloErba NA2100 protein CHN analyzer (Carlo Erba Instruments, Milan, Italy; limit of quantification < 0.02%). |
C/N | 5.630 | - |
Grain Size | Clay 14% Silt 83% Sand 3% | MasterSizer laser diffraction particle size analyzer (Malvern Panalytical, Malvern, UK). |
Clay mineralogy | Smectite 13% Illite 62% Kaolinite 25% | G3000 diffractometer coupled with CuKα radiation (INEL, Artenay, France; 0.15418 nm at 30 kV and 40 mA with a step interval of 0.032° 2θ and counting times of 3 s). |
SiO2 (%) | 56.75 | Total elemental composition was analyzed at the Service d’Analyse des Roches et des Minéraux (SARM-CRPG, Nancy, France) using ICP-OES after alkaline fusion and dissolution by acid attack (http://crpg.cnrs-nancy.fr/SARM). |
Al2O3 (%) | 16.45 | |
Fe2O3 (%) | 6.46 | |
MnO (%) | 0.15 | |
MgO (%) | 1.33 | |
CaO (%) | 1.28 | |
Na2O (%) | 0.30 | |
K2O (%) | 2.57 | |
TiO2 (%) | 0.88 | |
P2O5 (%) | 0.25 | |
Specific Surface Area (m2 g−1) | 26.06 ± 0.08 | Nitrogen gas adsorption at liquid nitrogen temperature using a Micromeritics Flowsorb II 2300 (Micrometrics, GA, USA). The sediments were outgassed during 30 min in flowing nitrogen at 250 °C. The accuracy of the obtained values is ±3%. |
Aclonifen (µg g−1) | 0.059 | GC-MS: Gas chromatography column from Zebra ZB-5MS 30 m, 0.25 mm i.d., and 0.25 μm film from Phenomenex® (Torrance, CA, USA) with Thermo Fisher Scientific (Waltham, MA, USA) Trace GC 2000 coupled with a DSQ II mass detector. The detection limit, based on a signal-to-noise ratio of 3, was estimated to 1 to 3 ng L−1 depending on the molecule. |
Alachlor (µg g−1) | 0.001 | |
Cd (µg g−1) | 0.415 ± 0.01 | Total digestion was performed in a clean room on the fine suspended matter fraction (>0.22 μm) then analysis was done by ICP-Q-MS Agilent 7500ce (Agilent Technologies, Santa Clara, CA, USA). |
Cu (µg g−1) | 39.5 ± 0.29 |
Constants | Cd | Cu | Aclonifen | Alachlor |
---|---|---|---|---|
Amax (%) | 106.6 | 104.0 | 74.1 | 10.4 |
Km (µg L−1) | 267.4 | 118.8 | 3.6 | 306.7 |
Confidence Interval 95% | ||||
Amax | 93.3−119.8 | 96.7−111.2 | 64.9−83.3 | 6.9−13.9 |
Km | 112.5−422.4 | 70.2−167.3 | 0.0−8.9 | 0.0−847.5 |
r2 | 0.9 | 1.0 | 0.3 | 0.1 |
Cd | Cu | Aclonifen | Alachlor | ||
---|---|---|---|---|---|
Freundlich | n | 1.17 | 1.14 | 1.13 | 1.00 |
KF | 7.76 | 7.54 | 1.47 | 0.08 | |
r2 | 0.91 | 0.85 | 0.54 | 0.97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Azzi, D.; Laurent, F.; Roussiez, V.; Chou, L.; Guiresse, M.; Probst, J.-L. Adsorption of Aclonifen, Alachlor, Cd and Cu onto Natural River Suspended Matter in the Context of Multi-Pollutions: Influence of Contaminant Co-Presence and Order of Input into the Aqueous Solution. Water 2018, 10, 1222. https://doi.org/10.3390/w10091222
El Azzi D, Laurent F, Roussiez V, Chou L, Guiresse M, Probst J-L. Adsorption of Aclonifen, Alachlor, Cd and Cu onto Natural River Suspended Matter in the Context of Multi-Pollutions: Influence of Contaminant Co-Presence and Order of Input into the Aqueous Solution. Water. 2018; 10(9):1222. https://doi.org/10.3390/w10091222
Chicago/Turabian StyleEl Azzi, Desiree, François Laurent, Vincent Roussiez, Lei Chou, Maritxu Guiresse, and Jean-Luc Probst. 2018. "Adsorption of Aclonifen, Alachlor, Cd and Cu onto Natural River Suspended Matter in the Context of Multi-Pollutions: Influence of Contaminant Co-Presence and Order of Input into the Aqueous Solution" Water 10, no. 9: 1222. https://doi.org/10.3390/w10091222
APA StyleEl Azzi, D., Laurent, F., Roussiez, V., Chou, L., Guiresse, M., & Probst, J.-L. (2018). Adsorption of Aclonifen, Alachlor, Cd and Cu onto Natural River Suspended Matter in the Context of Multi-Pollutions: Influence of Contaminant Co-Presence and Order of Input into the Aqueous Solution. Water, 10(9), 1222. https://doi.org/10.3390/w10091222