1. Introduction
Landslides are a common type of geological disaster. Tsunamis caused by landslides damage buildings and injure residents [
1]. In the Vaiont Landslide of 1963, a mass of approximately 270M
collapsed into a reservoir, generating a wave that overtopped the dam and hit the town of Longarone and other villages. Nearly 2000 people lost their lives in this disaster [
2]. Recently, owing to climate change and the frequent occurrence of extreme weather, landslide disasters present a serious challenge. Thus, investigating landslide tsunamis is ever more necessary.
For a better understanding of landslide tsunami, many simplified laboratory experiments have been performed [
3,
4]. The experimental setup often comprises a channel (e.g., 10–20 m), slide, and slide releaser. Slide width has been used to determine two-dimensional or three-dimensional (3-D) issues [
5]. Many researches have used stylus and high-speed cameras to capture the shapes of waves [
6,
7,
8], and particle image velocimetry is used to capture the flow field [
9,
10,
11]. To make the experiment more realistic, the experimental scale has been further amplified. Liu et al. [
12] launched a large-scale 3-D experiment at the 100-m level. In Wang’s [
13] experiment, realistic topography was employed rather than rectangular channels, but the slide was considered a rigid block of regular shape. To a certain extent, the data from physical experiments have helped scholars better understand the processes of landslide tsunamis. However, because of the complex topography and large scale of real engineering, full-scale experiments have nearly always been impossible. The difficulty and cost of the experiment make scholars more willing to use mathematical models to study landslide-tsunami disasters [
14].
In recent decades, the mathematical models for landslide tsunamis have been widely researched and accepted. Studies have attempted to develop mathematical models and algorithmic innovations [
14,
15,
16] to study and explain the phenomenon of landslide tsunamis [
5]. In recent years, numerical models have based on the shallow water equation [
4,
17], Boussinesq-type model [
18,
19], and Navier–Stokes equation [
16,
20,
21,
22] have been used. Wang et al. [
23] proposed a new method for considering dry–wet boundary treatment of a slider into water, coupled with the shallow water equation of the wave. Lo et al. [
24] compared the differences between the three wave models. For free surface flows, Ma et al. [
25] provided a shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Gallerano et al. [
26] proposed a new three-dimensional finite-volume non-hydrostatic shock-capturing model for free surface flow. More recently, the smooth-particle method has also been widely used in landslide-tsunami research [
27,
28,
29]. Due to the superiority of mathematical models, actual engineering applications have also been attempted by researchers [
30,
31]. Ataie et al. [
32] derived the 2-D (two-dimensional) 4th-order Boussinesq equation, verified by physical experiments and applied to the Maku and Shafa–Roud reservoir areas. Yin et al. [
20] used the Flow-3D package to simulate the landslide disaster in the Three Gorges Reservoir, China. At the same location as in Reference [
20], Huang et al. [
4] coupled the dimensionless formula and Boussinesq-type to calculate and analyze two representative examples from landslides. Generally, the mathematical models derived in previous literatures are mostly based on indoor experimental scales, focusing on the study of water wave models [
14]. The application of the landslide-tsunami model on a real-world scale which involves complex topography and slide surface is still inadequate.
Lacking a landslide-tsunami disaster record, the numerical models for landslide-tsunami disasters in the real world are often verified via laboratory experimental data [
14]. However, hydraulic scale modelling involves scale effects [
33,
34], which should be considered in the scale transformation of actual application. Scale effects were primarily attributed to the impact crater formation, the air entrainment and detrainment, and the turbulent boundary layer as a function of surface tension and fluid viscosity. These effects reduce the relative wave amplitude and the wave attenuation as compared with reference experiments [
33]. Inevitably, the scale effect of the numerical model should be validated prior to its application. Moreover, as a disaster requirement, computational efficiency is considered an important indicator in the generation and propagation of landslide tsunamis, involving large calculation areas. Although uniform [
20] or nonuniform meshes [
35] have been adopted, study of sensitivity analyses of different domains and mesh sizes is also significant for the mesh-generation scheme. Furthermore, the landslide-tsunami-type problem itself has obvious far- and near-field calculation characteristics (e.g., the shape and volume of the landslide have a greater impact on the near-field wave feature [
24]). Thus, a reasonable mesh-generation strategy based on sensitivity analysis is needed to balance computational efficiency and accuracy.
In this work, the study focuses on the scale effect and mesh generation of the numerical model for landslide tsunamis. Thus, the numerical method is introduced in the next section. The proposed method is validated by previous experiment data and other numerical results. Simultaneously, scale effect is investigated in different length scales of the numerical model. On a scale with practical engineering, mesh dependence is analyzed under the global uniform mesh and the mesh-generation scheme is proposed. In
Section 5, the numerical model and mesh-generation scheme are applied to landslide tsunamis in the Laxiwa Reservoir, China. Finally, the conclusions are drawn in
Section 6.
2. Numerical Method
Landslide tsunamis are a major challenge for computational fluid dynamics (CFD), owing to the multi-phases and multi-materials [
5]. Numerical models are required to accurately calculate high-speed slide impacts and complex dry–wet boundary transformations [
23]. In this study, the available CFD package (i.e., Flow-3D) based on the 3-D Reynolds-averaged Navier–Stokes (RANS) equations is used to calculate the flow-field and the renormalization group turbulent model is used for the closure of RANS equations. Note that the governing equations are described under the Cartesian coordinate system with the z-axis being vertical and the gravity direction being vertically downward. The RNG(Re-normalization group) model in Flow-3D can give the following equation:
where
denotes turbulent kinetic energy;
and
are the turbulent kinetic energy term and buoyancy term, respectively;
denotes the diffusion term, and
denotes the turbulent dissipation term.
are the components of velocity vector in the three directions (
).
represents the fluid volume fraction in each mesh unit. In order to improve the efficiency of calculation, the fluid area fraction
(in three direction) are used for each calculation unit during the calculation. Note that the intermixing of landslide material with water is neglected in this study so that the water density is considered as constant for simplification (1000 kg/m
3 is used here).
The volume-of-fluid (VOF) method, a relatively mature method for free-surface tracking [
36], is adopted at the free boundary to capture the rapidly changing water surface. Under the VOF method framework, the fluid (water in this paper) volume fraction of each calculation unit is treated as a volume function which can effectively distinguish different phases [
37]. This volume is then transported directly at local speeds without the transport equation. The superior performance of the VOF method guarantees absolute conservation of the fluid volume. The VOF method has been widely used, and its reliability has been proven [
20,
38,
39]. For efficiency, the Tru–VOF method [
40,
41] is used to ignore the gas unit. Compared with traditional VOF, the calculation convergence time can be shortened and the free-surface change can be described more accurately.
Landslide tsunamis involve landslide detachment and water-body coupling [
42]. Thus, the correct fluid–solid coupling method is critical to this problem. Flow-3D provides two ways to update the motion state of the slide block: prescribed motion and couple motion. Prescribed motion is set in case that the experimental data is available (as in the validation part in this paper), while couple motion is often used for prediction. The general moving object (GMO) model is used to describe the motion of the moving slide [
20,
32,
43]. GMO is a rigid body under any type of physical motion, which is either dynamically coupled with fluid flow or is user prescribed. It can move with six degrees of freedom (DOF) or rotate about a fixed point or a fixed axis. The geometric model of the new moment is calculated by the mesh encroachment at each time step. The deformation of the landslide and collision with the slope are ignored. The combined GMO method together with the fluid governing equation can be used to solve the fluid–solid coupling problem involved in a landslide tsunami. The model we selected has been successfully used to simulate impulse wave generated by landslides [
20,
44]. The computational meshes includes not only the watershed but also the free space for the development of water waves so that the total mesh volume can be larger than the initial water volume. Given that fluid volume is a function during the whole process, the wet boundary is updated with the the progress of calculation. Thus, the wet–dry transformation is achieved. More details of the physical and numerical model are described in Flow Science [
20].
Types of landslides have strong regional differences, which are related to land cover, land use, and climate condition, etc. [
45,
46]. As previously reported, rigid slides produce more turbulence as well as greater wave runup and wave height. The bluff body effect of rigid landslides seems to significantly influence the wave height and runup [
47]. In our study, the mesh-generation schemes and efficient and accurate numerical model establishment are focused. It needs to be emphasized that the landslide block deformation and fragmentation are not considered and that the block itself is treated as a rigid body. In addition, neglecting the deformation is consistent with the verification experiment selected in the following sections. It also has to be emphasized that the air portion of each calculation unit is not considered in the calculation process for simplification.
5. Real-Word Application: Landslide Tsunami in Laxiwa Reservoir
In practical engineering, complex physical processes and large computing areas often present computational difficulties or slow calculations. The Guobu slope of the Laxiwa Reservoir in China has long been considered a potential landslide risk. Because of the particularity of the landslide location (near the dam), the height and intensity of the wave generated by a slide will endanger dam safety. Additionally, owing to the persistence of tsunami phenomena and a long wavelength in large-scale regions, the damage caused in the lower reaches of the river becomes a focus. The Laxiwa model has all the characteristics mentioned above, and the target region chosen contains both an NF and a PF, making it a suitable case for validating our mesh scheme. The 3-D geometric model (
Figure 9b) was established according to the real-complex terrain (
Figure 9a). Detailed parameters can be found in
Table 6.
Based on the above discussion and the strategy of the mesh scheme, a conclusion can been reached regarding the accurate description of NF waves being key to improving the numerical simulation accuracy of the landslide tsunami. Thus, the mesh scheme, constituted by different mesh sizes, can be used in an engineering case. A smaller mesh block with minimum mesh size is applied to the NF around the landslide as shown in
Figure 9b. The other blocks with larger mesh sizes are constructed into different shapes to fit the terrain and calculation domain. More detailed information is introduced in
Figure 10.
The height of the initial impulsive surge caused by the landslide can often be used to evaluate the intensity of the landslide tsunami related to disaster prevention and prediction. For validation of the proposed mesh scheme in Laxiwa, two more global uniform mesh sizes of 3 and 6 m are used for calculations under the same conditions. Compared with the initial wave height calculated under various mesh schemes, the computational wave level decreases as the mesh size increases (as shown in
Figure 11). The highest wave result presented in three solutions are 16.59, 19.58, 26.94 m. By comparing the dam-top elevation (dam height is 250 m, and still-water depth is 230 m), the wave level is 6.94 m higher than the dam top in the mesh scheme solution, whereas that of the mesh solution of 3 and 6 m are 0.42 and 3.41 m lower than the dam top, respectively. Although the location producing the highest wave is in block 1, the accuracy of the calculation in block 2 is considerably improved as block 1 is refined. The capture capacity under the mesh scheme increases by 37.59% compared with the 3 m global mesh. The breaking and splashing of waves can, thus, be captured. When the landslide is very close to the dam, the calculation result of this first impulsive wave plays a decisive role and may cause an overtopping process [
8].
When the landslide stops moving and the wave enters the propagation stage, the different numerical result calculated in the NF will continue to appear in the PF (see
Figure 12). Although the range of propagation is consistent, the wave height is different at 30 s. As the mesh size decreases, the calculation result shows a decrease in the intensity of the wave. However, the mesh-scheme rendering preserves the previous calculation accuracy and captures capabilities with the propagation-field coarse mesh. To monitor the wave height near the dam, a measuring point is placed to record the date and the results of time-dependent wave height under three solutions are depicted in
Figure 13. The numerical difference first occurs when the lowest water level appears and remains afterwards. Because of wave propagation and energy attenuation, the capture capability of the mesh-scheme solution still has an advantage, but it is not as considerable as presented in the NF. The local refinement mesh scheme, considering NF and PF, has higher precision than the global coarse mesh under the same conditions.
For the computational cost, the mesh scheme considerably reduces the mesh number (see
Table 7) and improves the computational efficiency because fine mesh is only needed in the NF. The calculation speed is nonproportional to the mesh number because of the time it takes to write and store large amounts of data. From a more extreme perspective, 1.5 m global-uniform mesh can be used for a more accurate result. However, the calculation and storage requirements are beyond the capabilities of most personal computers. With limited hardware capabilities, the special treatment in NF rather than global fine mesh can be considered a better solution for large-scale simulations. Compared to landslide-tsunami simulation in Reference [
20] where the Flow-3D Code is adopted, the multi-size mesh blocks (while the single mesh block is used by Yin et al. [
20]) are considered for a balance between efficiency and accuracy in this study. The sensitivity analyses of the mesh size and computational region are also conducted to serve the mesh-generation scheme. It is also worth noting that the hydraulic structure can also be considered in the model to make the simulation closer to reality. A high-speed and accurate calculation of the landslide-tsunami problem becomes feasible in personal computers.
6. Conclusions
In this study, by comparing experimental data, it is shown that RANS and continuity equations can be used to accurately simulate the process of landslide tsunamis in both submarine and subaerial scenarios. Scale effects are investigated to establish the suitability of the model for real-world scale use. Multi-size mesh blocks are adopted to satisfy the specific calculation accuracy requirements of different regions. The 3-D numerical model can serve complex calculation conditions involving irregular topography, landslide surface, and hydraulic structures.
Based on GCI analysis, 14 cases of global uniform mesh were designed to investigate the dependence of the numerical results of the waves on computational domain dividing, and mesh size. The calculation area was divided into NF and PF according to the size of the mesh required to accurately capture the wave features. It can be concluded that the numerical result of the wave is highly dependent on the resolution of the mesh in the near field but less dependent on the mesh in the propagation field.
According to the analysis of mesh dependence, a mesh scheme was proposed and applied to the original numerical setting. The accuracy was considerably improved over the global original uniform coarse mesh, and the mesh number was significantly reduced. Two sets of new mesh schemes can increase calculation speed by 4.1 and 21.9 times. Thus, accurate simulation of NF is key to numerical simulation of landslide tsunamis. Finally, the mesh scheme was applied to the Laxiwa Reservoir in China. The mesh scheme achieved good results at an initial impulsive wave height, propagation wave intensity, and wave height near the dam. It considerably increased the speed of calculation. The research results provide guidance and reference values for rapid response and accurate calculation of actual engineering landslide-tsunami disasters. A more accurate definition of the NF range to obtain a better mesh solution is one of the key problems for a follow-up study.