From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methodology for Multi-Risk Assessment
2.2.1. Natural Hazard Characterization
2.2.2. Flood Hazard
2.2.3. Landslide Hazard
2.2.4. Tsunami Hazard
2.2.5. Earthquake Hazard
2.3. Vulnerability Characterization
2.4. Risk Characterization
3. Results
3.1. Natural Hazards
3.1.1. Models Validation
3.1.2. Natural Hazards Model Results
3.2. Vulnerability Evaluation
3.3. Risk Evaluation
3.4. Multi-Risk Analysis
3.5. Mitigation and Evacuation Plans
- Relocation of the population living nearby the Llolleo lagoons (estuary of Maipo river) in San Antonio. Such action will enhance the development of dune systems, creating a buffer zone against tsunamis.
- Local and regional impact assessment and definition of mitigation infrastructure in case that any expansion of the San Antonio port is planned. Furthermore, a safe location of the stacking areas must be ensured, along with a contingency plan to control the damage caused by ships that can be dragged during tsunamis events.
- Restriction to new developments near streams and the Maipo River. In addition, mitigation infrastructure should be considered to protect existing constructions in the area. Special attention should be drawn to south Llolleo, which is highly exposed to landslides events.
- More control over the extraction of aggregates from the Cordova stream in El Quisco to reduce flood and tsunami risks.
- Construction and updating of the information of road axes, including the road impedance and traveling times in each road.
- Definition of safe areas and evacuation times under the worst modeled scenario (i.e., an 8.8 Mw earthquake and tsunami with critical evacuation times of 10, 15, and 60 min [86].
- Definition of evacuation roads based on the urban layout, the relief and the safe zones in the city, which were located in open and flat areas able to receive a large number of people [87].
- Identification of evacuation roads with slopes lower than 12%, in which stairs must be avoided. Areas with evacuation times over 15 min must be considered as uninhabitable zones in the urban design of the cities.
4. Conclusions
- Despite the short distance between the cities and similar vulnerability to the evaluated natural hazards, their local characteristics produce very different levels of risk. This highlights the importance of local characteristics when assessing the risk and developing suitable mitigation plans.
- Disaster risk management plans should consider multi-risk methodologies instead of a single hazard approach. The multi-risk approach demonstrates that exposure to hazards and the risk increase when multiple hazards are considered.
- Evacuation plans for tsunamis are particularly important for these cities. Plans should consider clear and safe routes that can be used during summer, when floating population increases the vulnerability to natural disaster. Another relevant aspect is the development of urban planning tools that restrict future urban development near streams to reduce flood and landslide risks.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding-a Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5); Cambridge Univ Press: New York, NY, USA, 2013. [Google Scholar]
- Álvarez, G.; Quiroz, M.; León, J.; Cienfuegos, R. Identification and Classification of Urban Micro-Vulnerabilities in Tsunami Evacuation Routes for the City of Iquique, Chile. Nat. Hazards Earth Syst. Sci. 2018, 18, 2027–2039. [Google Scholar] [CrossRef]
- Crichton, D. The Risk Triangle. In Natural Disaster Management; Tudor Rose: London, UK, 1999; pp. 102–103. [Google Scholar]
- ISDR. Living with Risk: A Global Review of Disaster Reduction Initiatives; United Nations Publications, International Strategy for Disaster Reduction: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- UNISDR. Terminology: Basic Terms of Disaster Risk Reduction; UNISDR: Santiago, Chile, 2009. [Google Scholar]
- Camarasa-Belmonte, A.M.; Soriano-García, J. Flood Risk Assessment and Mapping in Peri-Urban Mediterranean Environments Using Hydrogeomorphology. Application to Ephemeral Streams in the Valencia Region (Eastern Spain). Landsc. Urban Plan. 2012, 104, 189–200. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Rebolledo, S.; McPhee, J.; Lara, M.; Cartes, M.; Rubio, E.; Silva, D.; Correia, N.; Vásquez, J.P. Catastrophic, Rainfall-Induced Debris Flows in Andean Villages of Tarapacá, Atacama Desert, Northern Chile. Landslides 2014, 11, 481–491. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, S.; Peng, M.; Zhang, L.M. A Physically-Based Multi-Hazard Risk Assessment Platform for Regional Rainfall-Induced Slope Failures and Debris Flows. Eng. Geol. 2016, 203, 15–29. [Google Scholar] [CrossRef]
- Villagra, P.; Herrmann, G.; Quintana, C.; Sepúlveda, R.D. Resilience Thinking and Urban Planning in a Coastal Environment at Risks of Tsunamis: The Case Study of Mehuín, Chile. Rev. Geogr. Norte Gd. 2016, 82, 63–82. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A Review of Multi-Risk Methodologies for Natural Hazards: Consequences and Challenges for a Climate Change Impact Assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Fleming, K.M.; Zschau, J.; Gasparini, P.; Modaressi, H.; Consortium, M. New Multi-Hazard and MulTi-RIsk Assessment MethodS for Europe (MATRIX): A Research Program towards Mitigating Multiple Hazards and Risks in Europe. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2011. [Google Scholar]
- Carpignano, A.; Golia, E.; Di Mauro, C.; Bouchon, S.; Nordvik, J. A Methodological Approach for the Definition of Multi-risk Maps at Regional Level: First Application. J. Risk Res. 2009, 12, 513–534. [Google Scholar] [CrossRef]
- CNID-CREDEN. Hacia Un Chile Resiliente Frente a Desastres: Una Oportunidad; CNID-CREDEN: Santiago, Chile, 2016. [Google Scholar]
- Fundacion Chile. Desafíos Del Agua Para La Región Latinoamericana; Fundacion Chile: Santiago, Chile, 2017. [Google Scholar]
- Camus, P.; Arenas, F.; Lagos, M.; Romero, A. Visión Histórica de La Respuesta a Las Amenazas Naturales En Chile y Oportunidades de Gestión Del Riesgo de Desastre. Rev. Geogr. Norte Gd. 2016, 64, 9–20. [Google Scholar] [CrossRef]
- UNISDR AM. Diagnóstico de La Situación de La Reducción Del Riesgo de Desastres Naturales En Chile; UNISDR AM: Geneva, Switzerland, 2010. [Google Scholar]
- ONEMI. Política Nacional Para La Gestión de Riesgo de Desastres; ONEMI: Santiago, Chile, 2014. [Google Scholar]
- USGS. Magnitude 8.8 – Offshore Maule, Chile, February 27, 2010; USGS: Reston, VA, USA, 2010.
- Ministerio del Interior. Balance de Reconstrucción; Ministerio del Interior: Santiago, Chile, 2011.
- Fariña, L.M.; Opaso, C.; Vera-Puz, P. Impactos Ambientales Del Terremoto y Tsunami En Chile. Las Réplicas Ocultas Del F, 27. Fund; TERRAM: Santiago, Chile, 2012. [Google Scholar]
- DOH. Plan Maestro de Evacuación y Drenaje de Aguas Lluvias, San Antonio y Cartagena, V Región; DOH: Santiago, Chile, 2003.
- Sepúlveda, S.A.; Rebolledo, S.; Vargas, G. Recent Catastrophic Debris Flows in Chile: Geological Hazard, Climatic Relationships and Human Response. Quat. Int. 2006, 158, 83–95. [Google Scholar] [CrossRef]
- Petley, D. Global Patterns of Loss of Life from Landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- MOP. Plan Especial de Infraestructura MOP de Apoyo Al Turismo Sustentable a 2030; MOP: Santiago, Chile, 2017.
- DGA. Balance Hídrico de Chile; DGA: Santiago, Chile, 1987.
- Gobernación Provincial de San Antonio. Plan de Seguridad Provincia de San Antonio; Gobernación Provincial de San Antonio: San Antonio, Chile, 2010.
- IMSA. Plan Regulador Comuna de San Antonio; IMSA: San Antonio, Chile, 2006.
- INE. Censo de Población y Vivienda 2002; INE: Santiago, Chile, 2002.
- Butz, W.P.; Lutz, W.; Sendzimir, J. Education and Differential Vulnerability to Natural Disasters. Ecol. Soc. 2014. [Google Scholar]
- Muttarak, R.; Lutz, W. Is Education a Key to Reducing Vulnerability to Natural Disasters and Hence Unavoidable Climate Change? Ecol. Soc. 2014, 19, 42. [Google Scholar] [CrossRef]
- Lagos López, M. Tsunamis de Origen Cercano a Las Costas de Chile; Pontificia Universidad Católica de Chile: Santiago, Chile, 2000. [Google Scholar]
- Fritz, H.M.; Petroff, C.M.; Catalán, P.A.; Cienfuegos, R.; Winckler, P.; Kalligeris, N.; Weiss, R.; Barrientos, S.E.; Meneses, G.; Valderas-Bermejo, C. Field Survey of the 27 February 2010 Chile Tsunami. Pure Appl. Geophys. 2011, 168, 1989–2010. [Google Scholar] [CrossRef]
- IMSA. Efectos de La Ola Sísmica o Tsunami En La Laguna Llolleo; IMSA: San Antonio, Chile, 2010.
- Habersack, H.; Schober, B.; Hauer, C. Floodplain Evaluation Matrix (FEM): An Interdisciplinary Method for Evaluating River Floodplains in the Context of Integrated Flood Risk Management. Nat. Hazards 2015, 75, 5–32. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Gallagher, A.; Du, X. Assessing and Mapping Regional Coastal Vulnerability for Port Environments and Coastal Cities. J. Coast. Conserv. 2018, 23, 59–70. [Google Scholar] [CrossRef]
- Fitton, J.M.; Hansom, J.D.; Rennie, A.F. A National Coastal Erosion Susceptibility Model for Scotland. Ocean Coast. Manag. 2016, 132, 80–89. [Google Scholar] [CrossRef]
- Fitton, J.M.; Hansom, J.D.; Rennie, A.F. A Method for Modelling Coastal Erosion Risk: The Example of Scotland. Nat. Hazards 2018, 91, 931–961. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Karatzas, G.P. A Hydro-Sedimentary Modeling System for Flash Flood Propagation and Hazard Estimation under Different Agricultural Practices. Nat. Hazards Earth Syst. Sci. 2014, 14, 625–634. [Google Scholar] [CrossRef]
- Te Chow, V.; Maidment, D.R.; Mays, L.W. Hidrología Aplicada; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Snyder, F.F. Synthetic Unit-graphs. Eos Trans. Am. Geophys. Union 1938, 19, 447–454. [Google Scholar] [CrossRef]
- Rossman, L.A.; Huber, W. Storm Water Management Model Reference Manual Volume I—Hydrology (Revised); US Environ. Prot. Agency: Cincinnati, OH, USA, 2016.
- Verni, F.; King Farias, H. Estimación de Crecidas En Cuencas No Controladas; Sociedad Chilena Ingenieria Hidraulica: Santiago, Chile, 1977; pp. 357–374. [Google Scholar]
- DGA. Manual de Cálculo de Crecidas y Caudales Mínimos En Cuencas Sin Información Fluviométrica; DGA: Santiago, Chile, 1995.
- Espey, W.; Altman, D.G.; Graves, C. Nomographs for Ten-Minute Unit Hydrographs for Small Urban Watersheds; Issue 32 of Technical Memorandum; American Society of Civil Engineers Urban Water Resources Council: Reston, VA, USA, 1977. [Google Scholar]
- Viessman, W.; Lewis, G.L. Introduction to Hydrology, 5th ed.; Prentice Hall/Pearson Education: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- NASA. ASTER Global Digital Elevation Model [Data Set]; NASA: Washington, DC, USA, 2009.
- IMEQ. Plan Municipal de Cultura Comuna de El Quisco 2014–2016; IMEQ: El Quisco, Chile, 2014.
- USACE. HEC-GeoRAS GIS Tools for Support of HEC-RAS Using ArcGIS© User’s Manual Version 4.3; USACE: Washington, DC, USA, 2011. [Google Scholar]
- USACE. HEC RAS, River Analysis System User’s Manual, v. 4.0; USACE: Washington, DC, USA, 2008. [Google Scholar]
- CIREN. Estudio Agrológico V Región; CIREN: Santiago, Chile, 1997. [Google Scholar]
- OAS. Primer on Natural Hazard Management in Integrated Regional Development Planning; Organization of American States, Department of Regional Development and Environment ExecutiveSecretariat for Economic and Social Affairs: Washington, DC, USA, 1991. [Google Scholar]
- Highland, L.; Bobrowsky, P.T. The Landslide Handbook: A Guide to Understanding Landslides; US Geological Survey Reston: Reston, VA, USA, 2008.
- Sepúlveda, S.A.; Padilla, C. Rain-Induced Debris and Mudflow Triggering Factors Assessment in the Santiago Cordilleran Foothills, Central Chile. Nat. Hazards 2008, 47, 201–215. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The Rainfall Intensity—Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Guimaraes, R.F.; Montgomery, D.R.; Greenberg, H.M.; Fernandes, N.F.; Gomes, R.A.T.; de Carvalho Júnior, O.A. Parameterization of Soil Properties for a Model of Topographic Controls on Shallow Landsliding: Application to Rio de Janeiro. Eng. Geol. 2003, 69, 99–108. [Google Scholar] [CrossRef]
- Gonzalez, C. Estudio de Áreas de Riesgo Geomorfológico de La Zona Urbana y de Expansión de La Comuna de San Antonio; Universidad de Chile: Santiago, Chile, 2005. [Google Scholar]
- Brito, J.L. San Antonio: Nuevas Crónicas Para Su Historia y Geografía; Sales. Impr.: San Antonio, TX, USA, 2019. [Google Scholar]
- Kawagoe, S.; Kazama, S.; Sarukkalige, P.R. Probabilistic Modelling of Rainfall Induced Landslide Hazard Assessment. Hydrol. Earth Syst. Sci. 2010, 14, 1047–1061. [Google Scholar] [CrossRef]
- Heintz, J.; Mahoney, M. Guidelines For Design Of Structures For Vertical Evacuation From Tsunamis; FEMA: Washington, DC, USA, 2008.
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar]
- DIHA. Propagación Regional de Tsunamis Basados En Eventos Históricos; DIHA: Santiago, Chile, 2011. [Google Scholar]
- PRDW-AV. Estudio de La Propagación Regional de Tsunamis Basados En El Evento de 1730; PRDW-AV: Santiago, Chile, 2011. [Google Scholar]
- Mader, C.L. Numerical Modeling of Water Waves; CRC Press: Boca Ratón, FL, USA, 2004. [Google Scholar]
- Marche, F. Derivation of a New Two-Dimensional Viscous Shallow Water Model with Varying Topography, Bottom Friction and Capillary Effects. Eur. J. Mech. 2007, 26, 49–63. [Google Scholar] [CrossRef]
- Guerra, M.; Cienfuegos, R.; Escauriaza, C.; Marche, F.; Galaz, J. Modeling Rapid Flood Propagation over Natural Terrains Using a Well-Balanced Scheme. J. Hydraul. Eng. 2014, 140, 4014026. [Google Scholar] [CrossRef]
- Cienfuegos, R.; Barthélemy, E.; Bonneton, P. A Fourth-order Compact Finite Volume Scheme for Fully Nonlinear and Weakly Dispersive Boussinesq-type Equations. Part II: Boundary Conditions and Validation. Int. J. Numer. Methods Fluids 2007, 53, 1423–1455. [Google Scholar] [CrossRef]
- Kotani, M. Tsunami Run-up Simulation and Damage Estimation Using GIS. Proc. Coast. Eng. JSCE 1998, 45, 356–360. [Google Scholar]
- Walsh, T.J.; Titov, V.V.; Venturato, A.J.; Mofjeld, H.O.; Gonzalez, F.I. Tsunami Hazard Map of the Elliott Bay Area, Seattle, Washington: Modeled Tsunami Inundation from a Seattle Fault Earthquake. Wash. Div. Geol. Earth Resour. Open File Rep. 2003, 14. [Google Scholar]
- Johnson, L.R.; Silva, W. The Effects of Unconsolidated Sediments upon the Ground Motion during Local Earthquakes. Bull. Seismol. Soc. Am. 1981, 71, 127–142. [Google Scholar]
- Pilz, M.; Parolai, S.; Picozzi, M.; Zschau, J. Evaluation of Proxies for Seismic Site Conditions in Large Urban Areas: The Example of Santiago de Chile. Phys. Chem. Earth Parts A/B/C 2011, 36, 1259–1266. [Google Scholar] [CrossRef]
- Code, P. Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Ciurean, R.L.; Schroter, D.; Glade, T. Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In Approaches to Disaster Management-Examining the Implications of Hazards, Emergencies and Disasters; InTech: London, UK, 2013. [Google Scholar]
- Guillard-Gonçalves, C.; Zêzere, J. Combining Social Vulnerability and Physical Vulnerability to Analyse Landslide Risk at the Municipal Scale. Geosciences 2018, 8, 294. [Google Scholar] [CrossRef]
- UNESCO-RAPCA. Introduction to the UNESCO-RAPCA Project; ITC: Enschede, The Netherlands, 2000. [Google Scholar]
- Susman, P.; O’Keefe, P.; Wisner, B. Global Disasters, a Radical Interpretation. Interpret. Calam. 1983, 263–283. [Google Scholar]
- Hewitt, K. Regions of Risk: A Geographical Introduction to Disasters; Routledge: London, UK, 2014. [Google Scholar]
- Thywissen, K. Components of Risk: A Comparative Glossary; UNU-EHS: Bonn, Germany, 2006. [Google Scholar]
- SUBDERE. Guía Análisis de Riesgos Naturales Para El Ordenamiento Territorial; SUBDERE: Santiago, Chile, 2011. [Google Scholar]
- FADEU-UC. Estudio de Riesgo de Sismos y Maremoto Para Comunas Costeras de Las Regiones de O’Higgins y Del Maule; FADEU-UC: Providencia, Chile, 2012. [Google Scholar]
- Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M.L.; Di Ruocco, A. Basic Principles of Multi-Risk Assessment: A Case Study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- ICPR. Non Structural Flood Plain Management: Measures and Their Effectiveness; International Commission for the Protection of the Rhine (ICPR): Koblenz, Germany, 2002. [Google Scholar]
- Johnstone, W.M.; Lence, B.J. Use of Flood, Loss, and Evacuation Models to Assess Exposure and Improve a Community Tsunami Response Plan: Vancouver Island. Nat. Hazards Rev. 2011, 13, 162–171. [Google Scholar] [CrossRef]
- Vargas, G.; Farías, M.; Carretier, S.; Tassara, A.; Baize, S.; Melnick, D. Coastal Uplift and Tsunami Effects Associated to the 2010 Mw8. 8 Maule Earthquake in Central Chile. Andean Geol. 2011, 38, 219–238. [Google Scholar]
- UNESCO. Preparación Para Casos de Tsunami. Guía Informativa Para Los Planificadores Especializados En Medidas de Contingencia Ante Catástrofes; UNESCO: Paris, France, 2008. [Google Scholar]
- FEMA. Seismic Performance Assessment of Buildings (Volume 1—Methodology); FEMA P-58; Federal Emergency Management Agency: Washington, DC, USA, 2012.
Parameter | Tsunami 2010 | Scenario 1 | Scenario 2 |
---|---|---|---|
Seismic momentum magnitude (Mw) | 8.8 | 8.6 | 8.8 |
Rupture length (km) | 550 | 500 | 500 |
Rupture width (km) | 100 | 150 | 150 |
Strike | 10° N | 10° N | 10° N |
Dip angle | 10° to 22° | 18° | 18° |
Slip length (m) | 6 to 10 | 5 | 10 |
Housing | Facilities | Infrastructure |
---|---|---|
Houses | Health services | Roads |
Residential buildings | Schools | Bridges |
Police stations | Public lighting | |
Naval units | Drinking water infrastructure | |
Local government facilities | Telecommunication infrastructure | |
Harbors | ||
Banks | ||
Supermarkets | ||
Gas stations | ||
Sport centers | ||
Government offices | ||
Churches | ||
Childcare facilities | ||
Neighborhood council | ||
Other services |
Hazard | Tsunami | Fluvial Flood | Landslide | Seismic Wave Amplification | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High | Medium | Low | High | Medium | Low | High | Medium | Low | High | Medium | Low | ||
Vulnerability | Score | 2.5 | 2 | 1.2 | 2.5 | 2 | 0.7 | 2.5 | 1 | 0.4 | 2.5 | 2 | 1.5 |
High | 4 | 10 | 8 | 4.8 | 10 | 8 | 2.8 | 10 | 4 | 1.6 | 10 | 8 | 6 |
Medium-High | 3 | 7.5 | 6 | 3.6 | 7.5 | 6 | 2.1 | 7.5 | 3 | 1.2 | 7.5 | 6 | 4.5 |
Medium-Low | 2 | 5 | 4 | 2.4 | 5 | 4 | 1.4 | 5 | 2 | 0.8 | 5 | 4 | 3 |
Low | 1 | 2.5 | 2 | 1.2 | 2.5 | 2 | 0.7 | 2.5 | 1 | 0.4 | 2.5 | 2 | 1.5 |
N/V | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Health Services | Characteristics-Definition | Socio-Economic Vulnerability |
Tertiary health care center | High complexity health service, up to 500 beds | 4 |
Secondary health care center | Medium complexity health service, specialist or referral services | 3 |
Urgency primary health care center | Urgent care center | 2 |
Ambulatory primary health care center | Low complexity health service for ambulatory care | 1 |
Educational Services | Characteristics-Definition | Socio-Economic Vulnerability |
Educational services T1 | More than 500 enrolled students | 4 |
Educational services T2 | Between 251 and 500 enrolled students | 4 |
Educational services T3 | Between 101 and 250 enrolled students | 3 |
Educational services T4 | Between 0 and 100 enrolled students | 2 |
Security services | Characteristics-definition | Socio-economic Vulnerability |
Police station T1 (“Comisaría”) | High complexity police unit | 4 |
Police station T2 (“Tenencia”) | Medium complexity police unit | 3 |
Police station T3 (“Retén”) | Low complexity police unit | 2 |
Navy Facilities | Characteristics-Definition | Socio-Economic Vulnerability |
Harbormaster facilities | Ultimate navy regional authority | 4 |
Water bailiff facilities | Local navy authorities controlled by the Harbormaster | 3 |
Navy staff offices | Local navy facilities | 2 |
Local Government Facilities | Characteristics-Definition | Socio-Economic Vulnerability |
Town hall | Local Government administration office | 4 |
Town hall offices | Various governmental agencies controlled by the Town Hall | 2 |
Small harbours facilities-N° of fisherman | Socio-Economic Vulnerability | |
>200 | 4 | |
50–200 | 3 | |
<50 | 2 | |
Services- Type of facility | Socio-Economic Vulnerability | |
Bank | 2 | |
Supermarket | 2 | |
Gas Station | 2 | |
Other services | 2 | |
Sport Facilities | Characteristics-Definition | Socio-Economic Vulnerability |
Stadium | Large capacity sport facility | 4 |
Fitness center | Medium to low capacity sport facility | 2 |
Football court | Medium to low capacity sport facility | 2 |
Other Facilities | Characteristics-Definition | Socio-Economic Vulnerability |
Government offices | Provide shelter and help during and after disasters | 2 |
Churches | Provide shelter during and after disasters | 2 |
Child care facilities | Provide shelter and services during and after disasters | 2 |
Neighborhood council | Provide shelter and services during and after disasters | 2 |
Other services | Provide shelter and services during and after disasters | 2 |
Material | I | LS | SA | Condition | I | LS | SA | Height | I | LS | SA | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | EQ | SA | EQ | SA | EQ | |||||||||
Concrete | 0 | 0 | 4 | 0 | Good | 0 | 0 | 4 | 1 | 0 | >2 Story | 1 | 4 | 4 |
Bricks | 0 | 1 | 1 | Regular-Good | - | 1 | - | 1 | 2 Story | 2 | 2 | |||
Clay | 2 | 2 | 2 | Regular | 2 | 2 | 2 | 2 | 1 Story | 4 | 1 | |||
Wood | 3 | 3 | 3 | Regular Bad | - | 3 | - | 3 | ||||||
Waste | 4 | 4 | 4 | Bad | 4 | 4 | 4 | 4 |
Road Surface | Physical Vulnerability |
Asphalt | 1 |
Gravel | 2 |
Improved dirt | 3 |
Dirt | 4 |
Road Surface | Physical Vulnerability |
Asphalt | 4 |
Gravel | 4 |
Improved dirt | 4 |
Dirt | 4 |
Type of Road | Social-Economical Vulnerability |
Paved road | 4 |
Unpaved road | 4 |
Trail | 1 |
Path | 1 |
Type of Road Associated with the Bridge | Social-Economical Vulnerability |
Paved road | 4 |
Unpaved road | 4 |
Trail | 1 |
Path | 1 |
Lightning Category | Social-Economical Vulnerability |
Substation | 4 |
Transformer | 2 |
Urban lightning | 1 |
Type of Antenna | Social-Economical Vulnerability |
Radio antenna | 4 |
Mobile antennas | 3 |
Television antennas | 2 |
Degree of Risk | Risk Score |
---|---|
High | 6.1–10 |
Medium-high | 4.1–6 |
Medium-low | 2.1–4 |
Low | 0.1–2 |
No risk | 0 |
Outside the hazard zones | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barría, P.; Cruzat, M.L.; Cienfuegos, R.; Gironás, J.; Escauriaza, C.; Bonilla, C.; Moris, R.; Ledezma, C.; Guerra, M.; Rodríguez, R.; et al. From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities. Water 2019, 11, 572. https://doi.org/10.3390/w11030572
Barría P, Cruzat ML, Cienfuegos R, Gironás J, Escauriaza C, Bonilla C, Moris R, Ledezma C, Guerra M, Rodríguez R, et al. From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities. Water. 2019; 11(3):572. https://doi.org/10.3390/w11030572
Chicago/Turabian StyleBarría, Pilar, María Luisa Cruzat, Rodrigo Cienfuegos, Jorge Gironás, Cristián Escauriaza, Carlos Bonilla, Roberto Moris, Christian Ledezma, Maricarmen Guerra, Raimundo Rodríguez, and et al. 2019. "From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities" Water 11, no. 3: 572. https://doi.org/10.3390/w11030572
APA StyleBarría, P., Cruzat, M. L., Cienfuegos, R., Gironás, J., Escauriaza, C., Bonilla, C., Moris, R., Ledezma, C., Guerra, M., Rodríguez, R., & Torres, A. (2019). From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities. Water, 11(3), 572. https://doi.org/10.3390/w11030572