Energy Sorghum Production under Arid and Semi-Arid Environments of Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Plant Measurements
2.3. Calculation and Statistical Analysis
2.4. Economic Analysis
3. Results
3.1. Environmental Conditions
3.2. Sorghum Emergence
3.3. Dry Biomass
3.4. Stem Diameter and Height of the Plant
3.5. Water Use Efficiency
3.6. Soil and Water Chemistry
3.7. Economic Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoffman, G.J.; Evans, R.G.; Jensen, M.E.; Martin, D.L.; Elliott, R.L. Design and Operation of Farm Irrigation Systems; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007. [Google Scholar]
- Sun, Y.; Niu, G.; Osuna, P.; Zhao, L.; Ganjegunte, G.; Peterson, G.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Variability in Salt Tolerance of Sorghum bicolor L. Agric. Sci. 2014, 2, 9–21. [Google Scholar] [CrossRef]
- Meki, M.N.; Snider, J.L.; Kiniry, J.R.; Raper, R.L.; Rocateli, A.C. Energy sorghum biomass harvest thresholds and tillage effects on soil organic carbon and bulk density. Ind. Crops Prod. 2013, 43, 172–182. [Google Scholar] [CrossRef]
- Rooney, W.L.; Blumenthal, J.; Bean, B.; Mullet, J.E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Biorefin. 2007, 1, 147–157. [Google Scholar] [CrossRef]
- Sivakumar, G.; Vail, D.R.; Xu, J.; Burner, D.M.; Lay, J.O.; Ge, X.; Weathers, P.J. Bioethanol and biodiesel: Alternative liquid fuels for future generations. Eng. Life Sci. 2010, 10, 8–18. [Google Scholar] [CrossRef]
- Francois, L.E.; Maas, E.V. Crop Response and Management of Salt-Affected Soils; Handbook of Plant and Crop Stress. Marcel Dekker Inc.: New York, NY, USA, 1994; p. 169. [Google Scholar]
- United States Department of Agriculture. SSURGO Soil Survey Geographic Database; USDA Natural Resources Conservation Service: Washington, DC, USA, 2013.
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; United States Department Of Agriculture: Washington, DC, USA, 1969.
- Enciso, J. South Texas Weather. 2014. Available online: http://southtexasweather.tamu.edu/ (accessed on 1 February 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Enciso, J.; Jifon, J.; Anciso, J.; Ribera, L. Productivity of onions using subsurface drip irrigation versus furrow irrigation systems with an internet based irrigation scheduling program. Int. J. Agron. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Gerik, T.; Bean, B.W.; Vanderlip, R. Sorghum Growth and Development; Texas FARMER Collection; Texas A & M System: College Station, TX, USA, 2003; Available online: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/87184/pdf_1724.pdf?sequence=1 (accessed on 28 June 2019).
- SAS Institute. Base SAS 9.4 Procedures Guide; SAS Institute: Cary, NC, USA, 2014. [Google Scholar]
- Enciso, J.; Jifon, J.; Ribera, L.; Zapata, S.D.; Ganjegunte, G.K. Yield, water use efficiency and economic analysis of energy sorghum in South Texas. Biomass Bioenergy 2015, 81, 339–344. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Annual Energy Outlook 2019, Petroleum and Other Liquids Prices. 2019. Available online: https://www.eia.gov/outlooks/aeo/data/browser/#/?id=12-AEO2019&sourcekey=0 (accessed on 18 June 2019).
- Chavez, J.C.; Enciso, J.; Meki, M.N.; Jeong, J.; Singh, V.P. Simulation of Energy Sorghum under Limited Irrigation Levels Using the EPIC Model. Trans. ASABE 2018, 61, 121–131. [Google Scholar] [CrossRef]
- Olson, S.N.; Ritter, K.; Rooney, W.; Kemanian, A.; McCarl, B.A.; Zhang, Y.; Hall, S.; Packer, D.; Mullet, J. High biomass yield energy sorghum: Developing a genetic model for C4 grass bioenergy crops. Biofuels Bioprod. Biorefin. 2012, 6, 640–655. [Google Scholar] [CrossRef]
- Meki, M.N.; Ogoshi, R.M.; Kiniry, J.R.; Crow, S.E.; Youkhana, A.H.; Nakahata, M.H.; Littlejohn, K. Performance evaluation of biomass sorghum in Hawaii and Texas. Ind. Crops Prod. 2017, 103, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Rocateli, A.; Raper, R.L.; Balkcom, K.S.; Arriaga, F.J.; Bransby, D.I. Biomass sorghum production and components under different irrigation/tillage systems for the southeastern US. Ind. Crops Prod. 2012, 36, 589–598. [Google Scholar] [CrossRef]
- Palumbo, A.D.; Vonella, A.V.; Garofalo, P.; D’Andrea, L.; Rinaldi, M. Response of a two-year sugar beet-sweet sorghum rotation to an agronomic management approach diversified by soil tillage and nitrogen fertilisation. Ital. J. Agron. 2014, 9, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Ganjegunte, G.; Ulery, A.; Niu, G.; Wu, Y. Treated urban wastewater irrigation effects on bioenergy sorghum biomass, quality, and soil salinity in an arid environment. Land Degrad. Dev. 2018, 29, 534–542. [Google Scholar] [CrossRef]
- Almodares, A.; Hadi, M.; Ahmadpour, H. Sorghum stem yield and soluble carbohydrates under different salinity levels. Afr. J. Biotechnol. 2008, 7, 4051–4055. [Google Scholar]
- Munns, R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 1993, 16, 15–24. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Singh, U.; Godwin, D.C.; Bowen, W.T. Cereal Growth, Development and Yield, in Understanding Options for Agricultural Production; Springer: Dordrecht, The Netherlands, 1998; pp. 79–98. [Google Scholar]
- Chavez, J.C. Growth Response and Productivity of Sorghum for Bioenergy Production in South Texas. Trans. ASABE 2019. (under review). [Google Scholar]
- Narayanan, S.; Aiken, R.M.; Vara Prasad, P.V.; Xin, Z.; Yu, J. Water and radiation use efficiencies in sorghum. Agron. J. 2013, 105, 649–656. [Google Scholar] [CrossRef]
- Hammer, G.L.; Farquhar, G.D.; Broad, I.J. On the extent of genetic variation for transpiration efficiency in sorghum. Aust. J. Agric. Res. 1997, 48, 649–656. [Google Scholar] [CrossRef]
- Henderson, S.; Von Caemmerer, S.; Farquhar, G.D.; Wade, L.; Hammer, G. Correlation between carbon isotope discrimination and transpiration efficiency in lines of the C4 species Sorghum bicolor in the glasshouse and the field. Funct. Plant Biol. 1998, 25, 111–123. [Google Scholar] [CrossRef]
- Ranjbar, G.; Ghadiri, H.; Razzaghi, F.; Sepaskhah, A.R.; Edalat, M. Evaluation of the SALTMED model for sorghum under saline conditions in an arid region. Int. J. Plant Prod. 2015, 9, 373–392. [Google Scholar]
- Vasilakoglou, I.; Dhima, K.; Karagiannidis, N.; Gatsis, T. Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Res. 2011, 120, 38–46. [Google Scholar] [CrossRef]
Parameter [a] | Hidalgo Silt Clay Loam (0–1%) | Hoban Silt Clay Loam (0–1%) | ||||||
---|---|---|---|---|---|---|---|---|
Soil layer | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Depth (cm) | 0–43 | 43–71 | 71–97 | 97–200 | 0–43 | 43–71 | 71–97 | 97–200 |
BD (Mg m−3) | 1.45 | 1.4 | 1.4 | 1.5 | 1.38 | 1.43 | 1.43 | 1.47 |
WP (m m−1) | 0.08 | 0.14 | 0.14 | 0.14 | 20 | 22.7 | 22.9 | 23 |
FC (m m−1) | 0.2 | 0.23 | 0.23 | 0.23 | 32.4 | 34.1 | 34.2 | 33.7 |
Sand (%) | 63 | 48 | 35 | 30 | 6.6 | 7.3 | 7.4 | 7.4 |
Silt (%) | 19 | 25 | 35 | 40 | 59.4 | 54 | 53.6 | 53.6 |
Soil pH | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 | 8.2 |
OCC (%) | 1 | 0.65 | 0.3 | 0.2 | 1.5 | 0.81 | 0.75 | 0.75 |
CCC (%) | 3 | 9 | 23 | 23 | 10 | 24 | 25 | 13 |
CEC (cmol kg−1) | 9.5 | 13 | 14 | 16 | 17.5 | 17.5 | 17.5 | 17.5 |
EC (dS m−1) | 1.0 | 1.5 | 2.0 | 2.0 | 3 | 3 | 3 | 4.6 |
Activity | Pecos | Weslaco | ||
---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | |
Planting date | 23 June | 7 June | 6 March | 24 March |
Harvesting date | 15 October | 19 September | 28 June | 8 July |
Length of growing season (d) | 114 | 104 | 114 | 106 |
In-season precipitation (mm) | 104 | 46 | 148 | 238 |
Full irrigation (mm) | 1067 | 1067 | 400 | 304 |
ETo [b] (mm) | 994 | 981 | 636 | 545 |
ETc [c] (mm) | 871 | 910 | 633 | 521 |
Fertilizer: Nitrogen (kg ha−1) | 100 | 100 | 100 | 100 |
Sum Srad [d] (MJ m−2) | 2411 | 2397 | 2111 | 1840 |
Cumulative GDU (°D) | 2063 | 1924 | 1897 | 1986 |
No. of days daylight > 12:20 h | 86 | 102 | 93 | 102 |
Parameter Analyzed | Units | Pecos | Weslaco |
---|---|---|---|
Calcium (Ca2+) | ppm | 196 | 74 |
Magnesium (Mg2+) | ppm | 41 | 32 |
Sodium (Na+) | ppm | 1134 | 160 |
Potassium (K+) | ppm | 24 | 11 |
Boron (B+) | ppm | 0.88 | 0.42 |
Carbonate (CO32−) | ppm | 0 | 0 |
Bicarbonate (HCO3−) | ppm | 165 | 115 |
Sulfate (SO42−) | ppm | 1322 | 344 |
Chloride (Cl−) | ppm | 1193 | 176 |
pH | 7.74 | 7.47 | |
Conductivity (EC) | dS m−1 | 6.4 | 1.42 |
Total dissolved salts (TDS) | ppm | 4076 | 913 |
Sodium adsorption radio (SAR) | 19.2 | 3.6 |
Parameter | Pecos | Weslaco | ||
---|---|---|---|---|
ES 5140 | ES 5200 | ES 5140 | ES 5200 | |
Yield (dry Mg ha−1) | 12.00 | 14.10 | 28.30 | 24.95 |
Ethanol conversion rate (L Mg−1) | 302.83 | 302.83 | 302.83 | 302.83 |
Ethanol price (USD L−1) | 0.40 | 0.40 | 0.40 | 0.40 |
Ethanol production cost (USD L−1) | 0.36 | 0.36 | 0.36 | 0.36 |
Feedstock variable costs (USD ha−1) | 902.77 | 996.38 | 1056.09 | 1059.53 |
Seeds (USD ha−1) | 64.11 | 122.12 | 64.11 | 122.12 |
Fertilizers (USD ha−1) | 289.36 | 289.36 | 289.36 | 289.36 |
Insecticides (USD ha−1) | 17.54 | 17.54 | 17.54 | 17.54 |
Irrigation (USD ha−1) | 160.05 | 160.05 | 62.00 | 62.00 |
Labor (USD ha−1) | 52.68 | 52.68 | 39.48 | 39.48 |
Fuel (USD ha−1) | 39.51 | 39.51 | 39.51 | 39.51 |
Repair and maintenance (USD ha−1) | 70.61 | 70.61 | 66.92 | 66.92 |
Harvest and hauling (USD ha−1) | 195.63 | 229.86 | 461.35 | 406.74 |
Interest on operating capital (USD ha−1) | 13.28 | 14.66 | 15.82 | 15.87 |
Feedstock fixed costs (USD ha−1) | 216.66 | 216.66 | 317.78 | 317.78 |
Machinery depreciation (USD ha−1) | 80.04 | 80.04 | 75.12 | 75.12 |
Equipment investment (USD ha−1) | 37.78 | 37.78 | 32.62 | 32.62 |
Land rent (USD ha−1) | 98.84 | 98.84 | 210.04 | 210.04 |
Return to producers (USD ha−1) | 111.94 | 121.30 | 137.39 | 137.73 |
Effect | Dry Biomass Productivity | Plant Height | Stem Diameter | WUE |
---|---|---|---|---|
Pecos | ||||
Cultivar 2014 | 0.372 | 0.015 | 0.037 | 0.366 |
Cultivar 2015 | 0.489 | 0.023 | 0.035 | 0.492 |
Year (Y) | 0.034 | 0.170 | 0.395 | 0.034 |
Cultivar (C) | 0.004 | <0.001 | 0.136 | 0.014 |
Y × C | 0.994 | 0.821 | 0.317 | 0.979 |
Weslaco | ||||
Cultivar 2014 | 0.364 | 0.018 | 0.046 | 0.127 |
Cultivar 2015 | 0.064 | 0.040 | 0.032 | 0.080 |
Year (Y) | 0.111 | 0.156 | 0.295 | 0.047 |
Cultivar (C) | 0.019 | <0.001 | 0.049 | 0.079 |
Y × C | 0.952 | 0.742 | 0.703 | 0.792 |
Soil Properties | Weslaco | Pecos | ||
---|---|---|---|---|
Initial | Final | Initial | Final | |
pH | 7.5 | 7.5 | 8.4 | 7.7 |
EC (dS m−1) | 0.63 | 0.65 | 4.54 | 2.7 |
SAR | 1.97 | 4.35 | 17.59 | 15.1 |
Organic Carbon (%) | 0.71 | 0.71 | 0.62 | 0.6 |
Potassium (ppm) | 16 | 16 | 5.5 | 5.3 |
Calcium (ppm) | 63 | 50 | 93 | 131.9 |
Magnesium (ppm) | 6 | 6 | 20 | 35.3 |
Parameter | Pecos | Weslaco | ||
---|---|---|---|---|
ES 5140 | ES 5200 | ES 5140 | ES 5200 | |
Net return (USD ha−1) | −1058.46 | −1131.18 | −1103.46 | −1155.52 |
Break-even ethanol price (USD L−1) | 0.70 | 0.67 | 0.53 | 0.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enciso, J.; Chavez, J.C.; Ganjegunte, G.; Zapata, S.D. Energy Sorghum Production under Arid and Semi-Arid Environments of Texas. Water 2019, 11, 1344. https://doi.org/10.3390/w11071344
Enciso J, Chavez JC, Ganjegunte G, Zapata SD. Energy Sorghum Production under Arid and Semi-Arid Environments of Texas. Water. 2019; 11(7):1344. https://doi.org/10.3390/w11071344
Chicago/Turabian StyleEnciso, Juan, Jose C. Chavez, Girisha Ganjegunte, and Samuel D. Zapata. 2019. "Energy Sorghum Production under Arid and Semi-Arid Environments of Texas" Water 11, no. 7: 1344. https://doi.org/10.3390/w11071344
APA StyleEnciso, J., Chavez, J. C., Ganjegunte, G., & Zapata, S. D. (2019). Energy Sorghum Production under Arid and Semi-Arid Environments of Texas. Water, 11(7), 1344. https://doi.org/10.3390/w11071344