Using Cosmic-Ray Neutron Probes in Validating Satellite Soil Moisture Products and Land Surface Models
Abstract
:1. Introduction
2. Data and Methodology
2.1. Satellite and Land Surface Model Based Soil Moisture Products
2.1.1. METOP-A/B Advanced Scatterometer (ASCAT)
2.1.2. Soil Moisture and Ocean Salinity (SMOS)
2.1.3. Soil Moisture Active and Passive (SMAP)
2.1.4. Advanced Microwave Scanning Radiometer 2 (AMSR2)
2.1.5. Climate Change Initiative (CCI)
2.1.6. Global Land Data Assimilation System (GLDAS)
2.1.7. Noah Land Surface Model (Noah LSM)
2.2. Cosmic Ray Neutron Probe Data
2.2.1. COSMOS Database
2.2.2. CRNP at Çakıt Basin
2.3. Methodology
2.3.1. Linear Correlations and Root Mean Square Errors
2.3.2. Triple Collocation
3. Analyses and Discussion
3.1. Obtaining Soil Moisture from CRNP Neutron Counts in Çakıt Basin
3.2. Validation with COSMOS Database
3.3. Validation with CRNP in Çakıt Basin
3.4. Discussions
3.4.1. COSMOS Database Results
3.4.2. Çakıt CRNP Results
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vereecken, H.; Huisman, J.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Huisman, J.; Hubbard, S.; Redman, J.; Annan, A. Measuring soil water content with ground penetrating radar. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Mchenry, J.R.; Gill, A.C. Measurement of soil moisture with a portable gamma ray scintillation spectrometer. Water Resour. Res. 1970, 6, 989–992. [Google Scholar] [CrossRef]
- Strati, V.; Albéri, M.; Anconelli, S.; Baldoncini, M.; Bittelli, M.; Bottardi, C.; Chiarelli, E.; Fabbri, B.; Guidi, V.; Raptis, K.; et al. Modelling soil water content in a tomato field: Proximal gamma ray spectroscopy and soil–crop system models. Agriculture 2018, 8, 60. [Google Scholar] [CrossRef]
- Zreda, M.; Desilets, D.; Ferré, T.; Scott, R.L. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Cao, R.; Shao, M.; Liang, Y. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem. J. Hydrol. 2018, 558, 1–8. [Google Scholar] [CrossRef]
- Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; De Rosnay, P.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.; et al. A review of the applications of ASCAT soil moisture products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2285–2306. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.; Small, E.E.; Zreda, M.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Kim, S.; Liu, Y.Y.; Johnson, F.M.; Parinussa, R.M.; Sharma, A. A global comparison of alternate AMSR2 soil moisture products: Why do they differ? Remote Sens. Environ. 2015, 161, 43–62. [Google Scholar] [CrossRef]
- Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275. [Google Scholar] [CrossRef]
- Evans, J.; Ward, H.; Blake, J.; Hewitt, E.; Morrison, R.; Fry, M.; Ball, L.; Doughty, L.; Libre, J.; Hitt, O.; et al. Soil water content in southern England derived from a cosmic-ray soil moisture observing system–COSMOS-UK. Hydrol. Process. 2016, 30, 4987–4999. [Google Scholar] [CrossRef]
- Kędzior, M.; Zawadzki, J. Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland. Geoderma 2016, 283, 21–31. [Google Scholar] [CrossRef]
- Lei, F.; Crow, W.T.; Shen, H.; Parinussa, R.M.; Holmes, T.R. The impact of local acquisition time on the accuracy of microwave surface soil moisture retrievals over the contiguous United States. Remote Sens. 2015, 7, 13448–13465. [Google Scholar] [CrossRef]
- Montzka, C.; Bogena, H.R.; Zreda, M.; Monerris, A.; Morrison, R.; Muddu, S.; Vereecken, H. Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes. Remote Sens. 2017, 9, 103. [Google Scholar] [CrossRef]
- Deng, K.A.K.; Lamine, S.; Pavlides, A.; Petropoulos, G.P.; Srivastava, P.K.; Bao, Y.; Hristopulos, D.; Anagnostopoulos, V. Operational Soil Moisture from ASCAT in Support of Water Resources Management. Remote Sens. 2019, 11, 579. [Google Scholar] [CrossRef]
- Isaksen, L.; Stoffelen, A. ERS scatterometer wind data impact on ECMWF’s tropical cyclone forecasts. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1885–1892. [Google Scholar] [CrossRef]
- Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S. SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE 2010, 98, 649–665. [Google Scholar] [CrossRef]
- McMullan, K.; Brown, M.A.; Martín-Neira, M.; Rits, W.; Ekholm, S.; Marti, J.; Lemanczyk, J. SMOS: The payload. IEEE Trans. Geosci. Remote Sens. 2008, 46, 594–605. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; JPL Publiser: Pasadena, CA, USA, 2014. [Google Scholar]
- Reichle, R.; De Lannoy, G.; Koster, R.; Crow, W.; Kimball, J. SMAP L4 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, version 2; National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016; Volume 10. [Google Scholar]
- Parinussa, R.M.; Holmes, T.R.H.; Wanders, N.; Dorigo, W.A.; de Jeu, R.A.M. A Preliminary Study toward Consistent Soil Moisture from AMSR2. J. Hydrometeorol. 2015, 16, 932–947. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.; de Jeu, R.A.; Wagner, W.; McCabe, M.F.; Evans, J.; Van Dijk, A. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple collocation-based merging of satellite soil moisture retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Rodell, M.; Beaudoing, H.K. GLDAS Noah Land Surface Model l4 Monthly 0.25 × 0.25 Degree, version 2.0; Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2013.
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Zreda, M.; Shuttleworth, W.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The cosmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Ferré, T. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Dong, J.; Ochsner, T.E.; Zreda, M.; Cosh, M.H.; Zou, C.B. Calibration and validation of the COSMOS rover for surface soil moisture measurement. Vadose Zone J. 2014, 13. [Google Scholar] [CrossRef]
- Hawdon, A.; McJannet, D.; Wallace, J. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia. Water Resour. Res. 2014, 50, 5029–5043. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude. Earth Planet. Sci. Lett. 2006, 246, 265–276. [Google Scholar] [CrossRef]
- Rosolem, R.; Shuttleworth, W.; Zreda, M.; Franz, T.; Zeng, X.; Kurc, S. The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system. J. Hydrometeorol. 2013, 14, 1659–1671. [Google Scholar] [CrossRef]
- Simpson, J.A. The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor. In Cosmic Rays and Earth; Springer: Berlin/Heidelberg, Germany, 2000; pp. 11–32. [Google Scholar]
- Schrön, M.; Köhli, M.; Scheiffele, L.; Iwema, J.; Bogena, H.R.; Lv, L.; Martini, E.; Baroni, G.; Rosolem, R.; Weimar, J.; et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci. 2016, 21, 5009–5030. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Jeong, J.; Choi, M. Extension of cosmic-ray neutron probe measurement depth for improving field scale root-zone soil moisture estimation by coupling with representative in-situ sensors. J. Hydrol. 2019, 571, 679–696. [Google Scholar] [CrossRef]
- Andreasen, M.; Jensen, K.H.; Desilets, D.; Zreda, M.; Bogena, H.R.; Looms, M.C. Cosmic-ray neutron transport at a forest field site: The sensitivity to various environmental conditions with focus on biomass and canopy interception. Hydrol. Earth Syst. Sci. 2017, 21, 1875–1894. [Google Scholar] [CrossRef]
- Vather, T.; Everson, C.; Mengistu, M.; Franz, T. Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture. South Afr. J. Sci. 2018, 114, 79–87. [Google Scholar] [CrossRef]
- Leroux, D.J.; Kerr, Y.H.; Richaume, P.; Fieuzal, R. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens. Environ. 2013, 133, 240–250. [Google Scholar] [CrossRef] [Green Version]
Soil Moisture Product | Pixel Size (km) | Coordinate of the Pixel Center (Closest to Çakıt CRNP) |
---|---|---|
METOP-A/B Advanced Scatterometer (ASCAT) EUMETSAT H113-H114 SSM | 12.5 × 12.5 | 37.597 N 34.625 E |
Soil Moisture and Ocean Salinity (SMOS) L3 1-day Binned Product | 25 × 25 | 37.482 N 34.484 E |
Soil Moisture Active and Passive (SMAP) L4 3-hourly EASE-Grid SSM | 9 × 9 | 37.4746 N 34.4969 E |
Advanced Microwave Scanning Radiometer (AMSR2) L3 1 day c band 6.9 Ghz | 9 × 9 | 37.55 N 34.45 E |
ESA Climate Change Initiative (CCI) v04.4 (Active, Passive and Combined) | 25 × 25 | 37.5155 N 34.4979 E |
Global Land Data Assimilation System (GLDAS) Noah LSM L4 3 hourly V2.1 | 25 × 25 | 37.625 N 34.375 E |
Soil Moisture Products | Mean | Median | RMSE Mean | RMSE Median | ubRMSE Mean | ubRMSE Median | Bias Mean | Bias Median |
---|---|---|---|---|---|---|---|---|
SMAP-RootZone | 0.32 | 0.30 | 9.37 | 7.08 | 4.13 | 3.75 | 5.09 | 4.09 |
SMAP-Surface | 0.37 | 0.33 | 9.06 | 6.95 | 4.24 | 4.02 | 5.10 | 3.17 |
ASCAT | 0.31 | 0.28 | 10.94 | 9.05 | 6.64 | 6.81 | 2.61 | 0.76 |
GLDAS | 0.36 | 0.34 | 9.23 | 8.40 | 4.04 | 3.69 | 5.27 | 5.00 |
SMOS-Ascending | 0.27 | 0.24 | 16.98 | 15.34 | 4.06 | 4.01 | −16.34 | −14.40 |
SMOS-Descending | 0.25 | 0.20 | 17.31 | 16.10 | 4.19 | 4.10 | −16.64 | −15.24 |
AMSR2-Ascending | 0.07 | 0.03 | 23.64 | 17.33 | 14.00 | 13.47 | 14.64 | 10.96 |
AMSR2-Descending | 0.17 | 0.10 | 19.18 | 14.33 | 11.12 | 9.99 | 10.12 | 5.19 |
CCI-Active | 0.29 | 0.26 | 10.83 | 8.87 | 6.64 | 6.41 | 3.27 | 1.10 |
CCI-Passive | 0.29 | 0.24 | 16.38 | 15.23 | 4.23 | 4.20 | −15.67 | −14.47 |
CCI-Combined | 0.33 | 0.33 | 16.83 | 15.80 | 3.85 | 3.82 | −16.10 | −14.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duygu, M.B.; Akyürek, Z. Using Cosmic-Ray Neutron Probes in Validating Satellite Soil Moisture Products and Land Surface Models. Water 2019, 11, 1362. https://doi.org/10.3390/w11071362
Duygu MB, Akyürek Z. Using Cosmic-Ray Neutron Probes in Validating Satellite Soil Moisture Products and Land Surface Models. Water. 2019; 11(7):1362. https://doi.org/10.3390/w11071362
Chicago/Turabian StyleDuygu, Mustafa Berk, and Zuhal Akyürek. 2019. "Using Cosmic-Ray Neutron Probes in Validating Satellite Soil Moisture Products and Land Surface Models" Water 11, no. 7: 1362. https://doi.org/10.3390/w11071362
APA StyleDuygu, M. B., & Akyürek, Z. (2019). Using Cosmic-Ray Neutron Probes in Validating Satellite Soil Moisture Products and Land Surface Models. Water, 11(7), 1362. https://doi.org/10.3390/w11071362