Hydrochemical Characteristics and Temporal Variations of Geothermal Water Quality in Tangtou, Shandong, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Analysis
3.2. Methods
3.2.1. Principal Component Analysis
3.2.2. Grey Relational Analysis
3.2.3. Geothermal Reservoir Temperature
4. Results and Discussion
4.1. Geothermal Water Chemistry
4.2. Saturation Index
4.3. Geothermal Reservoir Temperature
4.4. Formation Mechanism of Geothermal Water
4.5. Temporal Variations of Geothermal Water Quality
5. Conclusions
- (1)
- From 2007 to 2019, the temperatures of geothermal water range from 50 °C to 60 °C with a mean of 55.93 °C. Contents of major ions in the geothermal water are Na+ > Ca2+ > K+ > Mg2+ and Cl− > SO42− > HCO3− > NO3−, which makes the geothermal water belong to Cl-Na type. The measured TDS values of geothermal waters were 1560–2512 mg/L and pH were in the range of 6.7–8.8.
- (2)
- A positive correlation was found between Cl− and Na+, K+, Ca2+, and SiO2, while Cl− and HCO3− had a significant negative correlation. Water-rock interaction in the process of runoff is the main factor controlling the chemical composition of geothermal water, as well as mixing processes. Calculated SI values indicated that the geothermal water was saturated with respect to quartz, chalcedony, dolomite, calcite, and aragonite, while unsaturated with respect to anhydrite, halite, and gypsum.
- (3)
- Geothermal water passes through a long runoff path and a slower deep water cycle and rises through the tectonic fracture zone. The geothermal water was recharged by shallow underground cold water. At the intersection of Tangtou-Zhengjiazhuang fault and Tangtou-Xujiachanggou fault, the terrain is low-lying, the fissures are developed, and the geothermal water is blocked by the faults, which enriches in the deep underground near Tangtou.
- (4)
- Based on cation and silica chemical geothermometers, water temperatures estimated by the cation geothermometers ranged from 94.63 to 196.10 °C, while temperatures estimated the silica geothermometers from indicated a result of ranging from 69.13 to 123.75 °C. Na-K-Mg1/2 ternary diagram suggested that thermal water samples from 2007 to 2019 contain immature waters and partially equilibrated or mixed waters.
- (5)
- Based on the grey relational analysis, the main physicochemical components of geothermal water are obviously correlated with the precipitation and the exploitation of geothermal water, and all the correlation coefficients are greater than 0.6. Overall, TDS, TH, Na+, Ca2+, Cl−, and K+ showed a trend of decreasing first and then increasing, while Mg2+ displayed a reverse trend with these components. The temperature of geothermal water changes with time in three stages: steady, decline, and increase. In addition, geothermal water temperature also was influenced by other geothermal wells exploiting hot water in the study area.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, B.; Qiu, S.W.; Liu, Z.; Xiao, C. Characteristics of the geothermal water in Changbai Mountain volcanic region, northeast of China. Arab. J. Geosci. 2017, 10, 261. [Google Scholar] [CrossRef]
- Han, D.; Liang, X.; Jin, M.; Currell, M.; Song, X.; Liu, C. Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J. Volcanol. Geoth. Res. 2010, 189, 92–104. [Google Scholar] [CrossRef]
- Wang, X.; Lu, G.; Hu, B.X. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids 2018, 2018, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, T. Geochemical characterization of the Biga Peninsula thermal waters (NW Turkey). Aquat. Geochem. 2007, 13, 75–93. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, W.; Chen, J.; Jiang, S.; Kong, N. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics 2012, 42, 47–55. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Shao, J. Hydrochemistry and H-O-C-S Isotopic Geochemistry Characteristics of Geothermal Water in Nyemo-Nagqu, Tibet. Acta Geol. Sin-Engl. 2017, 91, 644–657. [Google Scholar] [CrossRef]
- Chenaker, H.; Houha, B.; Vincent, V. Hydrogeochemistry and geothermometry of thermal water from north-eastern Algeria. Geothermics 2018, 75, 137–145. [Google Scholar] [CrossRef]
- Deepa, S.; Venkateswaran, S. Appraisal of groundwater quality in upper Manimuktha sub basin, Vellar river, Tamil Nadu, India by using Water Quality Index (WQI) and multivariate statistical techniques. Model. Earth Syst. Environ. 2018, 4, 1165–1180. [Google Scholar] [CrossRef]
- Liu, J.; Hao, Y.; Gao, Z.; Wang, M.; Liu, M.; Wang, Z.; Wang, S. Determining the factors controlling the chemical composition of groundwater using multivariate statistics and geochemical methods in the Xiqu coal mine, North China. Environ. Earth Sci. 2019, 78, 364. [Google Scholar] [CrossRef]
- Ma, F.; Wei, A.; Deng, Q.; Zhao, H. Hydrochemical characteristics and the suitability of groundwater in the coastal region of Tangshan, China. J. Earth Sci. 2014, 25, 1067–1075. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, Z. A new determination method for identification coefficient of grey relational grade. J. Xi’an Univ. Archit. Technol. (Nat. Sci.) 2008, 4, 589–592. [Google Scholar]
- Li, J.; Li, X.; Lv, N.; Yang, Y.; Xi, B.; Li, M.; Bai, S.; Liu, D. Quantitative assessment of groundwater pollution intensity on typical contaminated sites in China using grey relational analysis and numerical simulation. Environ. Earth Sci. 2015, 74, 3955–3968. [Google Scholar] [CrossRef]
- Lv, F. Research on the identification coefficient of relational grade for grey system. Syst. Eng. Theor. Pract. 1997, 6, 50–55. [Google Scholar]
- Fan, K.; Wu, H. A new method on identification coefficient of relational grade for gray system. J. Wuhan Univ. Technol. 2002, 24, 86–88. [Google Scholar]
- Belhai, M.; Fujimitsu, Y.; Bouchareb-Haouchine, F.Z.; Haouchine, A.; Nishijima, J. A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria. Acta Geochim. 2016, 35, 271–287. [Google Scholar] [CrossRef]
- Başaran, C.; Gökgöz, A. Hydrochemical and isotopic properties of Heybeli geothermal area (Afyon, Turkey). Arab. J. Geosci. 2016, 9, 586. [Google Scholar] [CrossRef]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Truesdell, A.H. Summary of section III. Geochemical techniques in exploration. In Proceedings of the 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, USA, 20–29 May 1976; Volume 1, pp. liii–lxxix. [Google Scholar]
- Giggenbach, W.F. Isotopic composition of geothermal water and steam discharges. In Application of Geochemistry in Geothermal Reservoir Development; D’Amore, F., Ed.; UNITAR/UNDP: Vial del Corso, Italy, 1992; pp. 253–273. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Neurochem. Int. 1944, 25, 27–39. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Et Cosmochim. Acta. 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Gueroui, Y.; Maoui, A.; Touati, H.; Guettaf, M.; Bousbia, A. Hydrogeochemical and environmental isotopes study of the northeastern Algerian thermal waters. Environ. Earth Sci. 2018, 77, 747. [Google Scholar] [CrossRef]
- Vengosh, A.; Helvacı, C.; Karamanderesi, I.S.H. Geochemical constraints for the origin of thermal waters from western Turkey. Appl. Geochem. 2002, 17, 163–183. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Z.; Wang, M.; Li, Y.; Ma, Y.; Shi, M.; Zhang, H. Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City. Environ. Earth Sci. 2018, 77, 646. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Liu, L.; Cao, Y.; Shi, M.; Li, T.; Sun, W. Hydrochemical and environmental isotopic characteristics of geothermal resources in the Linyi segment of the Yishu fault zone. Shanghai Land Res. 2018, 39, 90–94. [Google Scholar]
- Belhai, M.; Fujimitsu, Y.; Nishijima, J.; Bersi, M. Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters. Arab. J. Geosci. 2017, 10, 8. [Google Scholar] [CrossRef]
- Foued, B.; Hénia, D.; Lazhar, B.; Nabil, M.; Nabil, C. Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J. Geol. Soc. India 2017, 90, 226–232. [Google Scholar] [CrossRef]
- Wang, T.G.; Feng, Z.M.; Chang, Y.X.; Song, C.B.; Wei, Z.R.; Liu, S.J. Environmental Geological Problems Caused by Hot Spring Development in Tangtou and the Prevention Countermeasure. Chin. J. Geol. Hazard Control 2002, 1, 85–90. [Google Scholar]
- Dong, Y.M.; Li, Z.H.; Chen, S.L.; Zhao, G.L. Geothermal resource exploitation, utilization and protection in Linyi segment of Yishu fault. Res. Dev. Mark. 2009, 25, 1031–1033. [Google Scholar]
- Yang, Q.J.; Yang, M.; Li, M. Study on the Geotherm-forming Geological Condition in the Yishu River Fault Zone. Geol. Surv. Res. 2008, 31, 278–284. [Google Scholar]
Geothermometers | Calculation Formulas | References |
---|---|---|
A (°C): Na-K | T = [1217/(1.483 + log (Na/K))] − 273.15 | [17] |
B (°C): Na-K | T = [856/(0.857 + log (Na/K))] − 273.15 | [18] |
C (°C): Na-K | T = {1390/[log (Na/K) + 1.75]} − 273.15 | [19] |
D (°C): K-Mg | T = {4410/[14 − log (K2/Mg)]} − 273.15 | [19] |
E (°C): Chalcedony | T = [1032/(4.69 − log SiO2)] − 273.15 | [17] |
F (°C): Quartz | T = [1309/(5.19 − log SiO2)] − 273.15 | [17] |
J (°C): Silica | T = [1000/(4.55 − log SiO2)] − 273.15 | [20] |
Max | Min | Mean | SD | |
---|---|---|---|---|
Cl− (mg/L) | 1123.00 | 557.28 | 814.51 | 136.52 |
SO42− (mg/L) | 278.20 | 158.40 | 219.94 | 39.18 |
HCO3− (mg/L) | 277.03 | 123.60 | 182.42 | 47.53 |
NO3− (mg/L) | 63.29 | 4.49 | 29.63 | 17.60 |
K+ (mg/L) | 30.01 | 20.50 | 25.31 | 2.81 |
Na+ (mg/L) | 566.20 | 356.73 | 465.05 | 55.04 |
Ca2+ (mg/L) | 256.00 | 147.66 | 183.80 | 30.20 |
Mg2+ (mg/L) | 6.09 | 0.89 | 3.38 | 1.33 |
TH (mg/L) | 658.96 | 381.88 | 472.89 | 75.94 |
H2SiO3 (mg/L) | 104.0 | 56.16 | 85.11 | 14.60 |
pH | 8.8 | 6.7 | 7.73 | 0.54 |
TDS (mg/L) | 2512 | 1560 | 1963.49 | 247.76 |
T (°C) | 60.00 | 50.00 | 55.93 | 3.89 |
SI (Anhydrite) | −0.99 | −1.28 | −1.13 | 0.09 |
SI (Aragonite) | 1.81 | −0.09 | 0.89 | 0.51 |
SI (Calcite) | 1.93 | 0.03 | 1.01 | 0.51 |
SI (Chalcedony) | 0.39 | 0.07 | 0.24 | 0.11 |
SI (Dolomite) | 2.73 | −1.05 | 0.78 | 1.05 |
SI (Gypsum) | −0.95 | −1.28 | −1.14 | 0.09 |
SI (Halite) | −5.00 | −5.35 | −5.12 | 0.11 |
SI (Quartz) | 0.75 | 0.41 | 0.59 | 0.10 |
Variables | Principal Components | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Cl− | 0.981 | 0.008 | −0.042 |
Ca2+ | 0.888 | −0.146 | 0.105 |
Na+ | 0.851 | 0.288 | −0.070 |
HCO3− | −0.822 | −0.203 | −0.088 |
K+ | 0.760 | 0.486 | −0.031 |
H2SiO3 | 0.697 | −0.328 | 0.130 |
NO3− | −0.105 | 0.864 | −0.239 |
pH | −0.179 | −0.777 | −0.218 |
Mg2+ | −0.117 | −0.272 | 0.819 |
SO42− | 0.172 | 0.231 | 0.766 |
Eigenvalue | 4.300 | 1.968 | 1.405 |
Variance (%) | 42.996 | 19.681 | 14.054 |
Cumulative of variance (%) | 42.996 | 62.677 | 76.731 |
Time | Wellhead Temperature (°C) | A(°C) | B(°C) | C(°C) | D(°C) | E(°C) | F(°C) | J(°C) |
---|---|---|---|---|---|---|---|---|
2007 | 60.0 | 178.40 | 140.55 | 196.10 | 107.30 | 94.30 | 122.49 | 101.59 |
2008 | 60.0 | 172.03 | 132.98 | 190.07 | 106.99 | 89.64 | 118.23 | 96.59 |
2009 | 60.0 | 171.62 | 132.49 | 189.68 | 98.96 | 80.23 | 109.56 | 86.52 |
2010 | 60.0 | 170.38 | 131.03 | 188.51 | 98.83 | 92.96 | 121.27 | 100.15 |
2011 | 58.0 | 172.17 | 133.14 | 190.20 | 98.74 | 77.33 | 106.87 | 83.41 |
2012 | 55.0 | 178.24 | 140.36 | 195.96 | 94.63 | 84.58 | 113.57 | 91.17 |
2013 | 55.0 | 164.85 | 124.53 | 183.26 | 101.86 | 89.92 | 118.48 | 96.89 |
2014 | 53.0 | 168.33 | 128.61 | 186.56 | 96.76 | 91.87 | 120.27 | 98.97 |
2015 | 52.0 | 160.76 | 119.74 | 179.37 | 94.88 | 69.13 | 99.25 | 74.67 |
2016 | 50.0 | 173.78 | 135.05 | 191.73 | 100.99 | 95.67 | 123.75 | 103.06 |
2017 | 51.4 | 162.67 | 121.97 | 181.18 | 120.29 | 91.05 | 119.52 | 98.10 |
2018 | 52.5 | 165.00 | 124.70 | 183.40 | 105.88 | 64.71 | 95.11 | 69.96 |
2019 | 52.0 | 168.73 | 129.08 | 186.94 | 109.55 | 84.48 | 113.48 | 91.06 |
Max | 60 | 178.4 | 140.55 | 196.1 | 120.29 | 95.67 | 123.75 | 103.06 |
Min | 50 | 160.76 | 119.74 | 179.37 | 94.63 | 64.71 | 95.11 | 69.96 |
Mean | 55.30 | 169.77 | 130.33 | 187.92 | 102.74 | 85.07 | 113.99 | 91.70 |
Parameter | ρ (k) | Exploitation | Precipitation |
---|---|---|---|
Cl− | 0.29 | 0.69 | 0.65 |
SO42− | 0.36 | 0.70 | 0.64 |
HCO3− | 0.34 | 0.75 | 0.63 |
NO3− | 0.80 | 0.71 | 0.72 |
K+ | 0.23 | 0.62 | 0.67 |
Na+ | 0.29 | 0.67 | 0.64 |
Ca2+ | 0.24 | 0.64 | 0.68 |
Mg2+ | 0.77 | 0.81 | 0.7 |
TH | 0.24 | 0.65 | 0.69 |
pH | 0.22 | 0.71 | 0.69 |
TDS | 0.22 | 0.62 | 0.66 |
T (℃) | 0.2 | 0.64 | 0.69 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Liu, J.; Li, F.; Wang, M.; Feng, J.; Wu, G. Hydrochemical Characteristics and Temporal Variations of Geothermal Water Quality in Tangtou, Shandong, China. Water 2019, 11, 1643. https://doi.org/10.3390/w11081643
Gao Z, Liu J, Li F, Wang M, Feng J, Wu G. Hydrochemical Characteristics and Temporal Variations of Geothermal Water Quality in Tangtou, Shandong, China. Water. 2019; 11(8):1643. https://doi.org/10.3390/w11081643
Chicago/Turabian StyleGao, Zongjun, Jiutan Liu, Fuquan Li, Min Wang, Jianguo Feng, and Guangwei Wu. 2019. "Hydrochemical Characteristics and Temporal Variations of Geothermal Water Quality in Tangtou, Shandong, China" Water 11, no. 8: 1643. https://doi.org/10.3390/w11081643
APA StyleGao, Z., Liu, J., Li, F., Wang, M., Feng, J., & Wu, G. (2019). Hydrochemical Characteristics and Temporal Variations of Geothermal Water Quality in Tangtou, Shandong, China. Water, 11(8), 1643. https://doi.org/10.3390/w11081643