Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. The Meteorological Data
2.3. The Remote Sensing Data (RS)
2.4. The Water Balance Model: WetSpa
2.5. The Metrical Upscaling
3. Results and Discussion
3.1. The Regression at the Micro-Catchment Scale (2 m)
The Surface Water Balance
3.2. The Evapotranspiration (ET)
3.3. The Routing
- Q: discharge at the outlet [m/s]
- ARO: accumulation of runoff [m/h]
- RO: runoff volume (from regression analysis) [m/h]
- t: timestep [h]
- tO: timing to outlet [h]
- tO: mean timing to outlet for study area [h]
- [tO]: integer value of the timing to outlet [h]
- PX: proximity index [m]
- k: scaling parameter for watershed sizes [-]
3.4. The Spatial Validation (20 m Resolution)
3.5. Validation for Different Temporal Resolutions
3.6. Upscaling to a City-Wide Scale
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APEX | Airborne Prism EXperiment |
DCIA | Directly connected impervious area |
Infil | Infiltration |
LAI | Leaf area index |
LIDAR | Light detection and ranging |
NSE | Nash-Sutcliffe efficiency |
Pbias | Percent bias |
RDB | Roodebeek |
RMSE | Root mean squarred error |
RO | Surface runoff |
RS | Remote sensing |
TIA | Total Impervious Area |
Veg% | Vegetation cover |
WetSpa | Water and Energy Transfer between Soil, Plants and Atmosphere |
WMB | Watermaelbeek |
References
- Amaguchi, H.; Kawamura, A.; Olsson, J.; Takasaki, T. Development and testing of a distributed urban storm runoff event model with a vector-based catchment delineation. J. Hydrol. 2012, 420–421, 205–215. [Google Scholar] [CrossRef]
- Braud, I.; Breil, P.; Thollet, F.; Lagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. J. Hydrol. 2013, 485, 5–23. [Google Scholar] [CrossRef]
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Burns, M.J. Stormwater infiltration and the ‘urban karst’—A review. J. Hydrol. 2017, 552, 141–150. [Google Scholar] [CrossRef]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total. Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Kuehler, E.; Hathaway, J.; Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 2017, 10, e1813. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef] [Green Version]
- Berland, A.; Shiflett, S.a.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Golden, H.E.; Hoghooghi, N. Green infrastructure and its catchment-scale effects: An emerging science. Wiley Interdiscip. Rev. Water 2017, 5, e1254. [Google Scholar] [CrossRef] [PubMed]
- Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C.W. Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [Google Scholar] [CrossRef]
- Priem, F.; Canters, F.; Brussel, V.U. Synergistic use of LiDAR and APEX hyperspectral data for high-resolution urban land cover mapping. Remote Sens. 2016, 8, 787. [Google Scholar] [CrossRef]
- Wirion, C.; Bauwens, W.; Verbeiren, B. Location- and time-specific hydrological simulations with multi-resolution remote sensing data in urban areas. Remote Sens. 2017, 9, 645. [Google Scholar] [CrossRef]
- Launeau, P.; Kassouk, Z.; Debaine, F.; Roy, R.; Patrice, G.; Boulet, C.; Rouaud, J.M.; Giraud, M. Airborne hyperspectral mapping of trees in an urban area. Int. J. Remote Sens. 2017, 38, 1277–1311. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, H.; Van de Voorde, T.; Lu, S.; Xu, W.; Zhou, Y. Land cover mapping in urban environments using hyperspectral APEX data: A study case in Baden, Switzerland. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 70–82. [Google Scholar] [CrossRef]
- Degerickx, J.; Roberts, D.; McFadden, J.; Hermy, M.; Somers, B. Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Transon, J.; D’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of hyperspectral Earth Observation applications from space in the Sentinel-2 context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef]
- Small, C.; Okujeni, A.; van der Linden, S.; Waske, B. Remote Sensing of Urban Environments. Compr. Remote. Sens. 2018, 96–127. [Google Scholar] [CrossRef]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- da Costa, E.M.; Rocha, J.; Rodrigues, M. Urban Form Analysus employing Land Cover and Spatial Metrics—The case of the Lisbon Metropolitan Area. In Proceedings of the 5th International Conference: Virtual City and Territory, Barcelona, Spain, 2–4 June 2009; Volume 5, pp. 133–144. [Google Scholar]
- Reis, J.P.; Silva, E.A.; Pinho, P. Spatial metrics to study urban patterns in growing and shrinking cities. Urban Geogr. 2015, 37, 246–271. [Google Scholar] [CrossRef]
- Grippa, T.; Id, S.G.; Zarougui, S.; Bognounou, P. Mapping Urban Land Use at Street Block Level Using OpenStreetMap, Remote Sensing Data, and Spatial Metrics. ISPRS Int. J. Geo Inf. 2018, 7, 246. [Google Scholar] [CrossRef]
- Van Nieuwenhuyse, B.H.J.; Antoine, M.; Wyseure, G.; Govers, G. Pattern-process relationships in surface hydrology: Hydrological connectivity expressed in landscape metrics. Hydrol. Process. 2011, 25, 3760–3773. [Google Scholar] [CrossRef]
- Zhang, G.; Guhathakurta, S.; Dai, G.; Wu, L.; Yan, L. The Control of Land-Use Patterns for Stormwater Management at Multiple Spatial Scales. Environ. Manage 2013, 51, 555–570. [Google Scholar] [CrossRef]
- Bell, C.D.; McMillan, S.K.; Clinton, S.M.; Jefferson, A.J. Hydrologic response to stormwater control measures in urban watersheds. J. Hydrol. 2016, 541, 1488–1500. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Brewer, T. Refining flood estimation in urbanized catchments using landscape metrics. Landsc. Urban Plan. 2018, 175, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; Smedt, F.D.; Hoffmann, L.; Pfister, L. Assessing land use impacts on flood processes in complex terrain by using GIS and modeling approach. Environ. Model. Assess. 2004, 9, 227–235. [Google Scholar] [CrossRef]
- FlowBru. Pluviometer Depot Communal. 2018. Available online: http://flowbru.be/fr (accessed on 22 August 2019).
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [CrossRef]
- Priem, F.; Canters, F.; Okujeni, A.; van der Linden, S. Optimizing mixed spectra generation for regression-based unmixing of land cover in urban areas. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Z.M.; Batelaan, O.; De Smedt, F. A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys. Chem. Earth 1996, 21, 189–193. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Enhanced model flexibility and coupling opportunities: The WetSpa model case. In Proceedings of the International Congress on Environmental Modelling and Software, Leipzig, Germany, 1–5 July 2012; p. 8. [Google Scholar]
- Overheid, V. Informatie Vlaanderen. 2016. Available online: https://overheid.vlaanderen.be/informatie-vlaanderen/producten-diensten/digitaal-hoogtemodel-dhmv (accessed on 15 March 2016).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Su, Z. Remote Sensing Applied to Hydrology: The Sauer River Basin Study. Ph.D. Thesis, Faculty of Civil Engineering, Ruhr University Bochum, Bochum, Germany, 1996. [Google Scholar]
- Verbeiren, B.; Khanh Nguyen, H.; Wirion, C.; Batelaan, O. An Earth observation based method to assess the influence of seasonal dynamics of canopy interception storage on the urban water balance. Belgeo 2016. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimian, A.; Wilson, B.N.; Gulliver, J.S. Improved methods to estimate the effective impervious area in urban catchments using rainfall-runoff data. J. Hydrol. 2016, 536, 109–118. [Google Scholar] [CrossRef]
- Kidd, C.H.R.; Lowing, M.J. The Wallingford Urban Subcatchment Model; Technical Report 60; Institute of Hydrology, The Natural Environment Research Council: Swindon, UK, 1979. [Google Scholar]
- Moss, J.L.; Doick, K.J.; Smith, S.; Shahrestani, M. Urban Forestry & Urban Greening Influence of evaporative cooling by urban forests on cooling demand in. Urban For. Urban Green. 2019, 37, 65–73. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Li, H.Y.; Zhang, Q.T.; Wan, C.H.; Liang, X.J.; Li, X.Z. Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Jacobs, C.; Elbers, J.; Brolsma, R.; Hartogensis, O.; Moors, E.; Rodríguez-Carretero Márquez, M.T.; van Hove, B. Assessment of evaporative water loss from Dutch cities. Build. Environ. 2014, 83, 27–38. [Google Scholar] [CrossRef]
- Smithers, R.J.; Doick, K.J.; Burton, A.; Sibille, R.; Steinbach, D.; Harris, R.; Groves, L.; Blicharska, M. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 2018, 21, 851–862. [Google Scholar] [CrossRef]
- Cordery, I. Antecedent wetness for design flood estimation. Civ. Eng. Trans. 1970, 12, 181–184. [Google Scholar]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef] [Green Version]
- Todini, E. Hydrological catchment modelling: Past, present and future. Hydrol. Earth Syst. Sci. 2007, 11, 468–482. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Das, K.; Paul, P.K. Present status of soil moisture estimation by microwave remote sensing. Cogent Geosci. 2015, 1, 1084669. [Google Scholar] [CrossRef]
- Dousset, B. Interpretation of ERS-SAR images over urban surfaces. In Proceedings of the 3rd ERS Symposium on Space at the Service of Our Environment, Florence, Italy, 14–21 March 1997; Volume 1, pp. 53–57. [Google Scholar]
Metric | Type | Data Needed | Reference |
---|---|---|---|
Precipitation | Temporal | Meteorological | [29] |
Leaf Area Index (LAI) | Temporal & spatial | RS | [36,37] |
Vegetation cover (Veg%) | Spatial | RS | / |
Total impervious area (TIA) | Spatial | RS | [38] |
Directly connected impervious area (DCIA) | Spatial | RS | [38] |
Time to outlet (tO) | Spatial | RS, DSM | / |
Hydrological distance (hdO) | Spatial | DSM | [27] |
Proximity index (PX) | Spatial | DSM | [24] |
Variables | Pnet | RO | Infil | P | LAI | Veg% | TIA |
---|---|---|---|---|---|---|---|
Pnet | 1 | ||||||
RO | 0.878 | 1 | |||||
Infil | 0.977 | 0.757 | 1 | ||||
P | 0.990 | 0.873 | 0.966 | 1 | |||
LAI | −0.013 | −0.077 | 0.016 | 0.023 | 1 | ||
Veg% | −0.014 | −0.164 | 0.053 | 0.000 | 0.522 | 1 | |
TIA | 0.014 | 0.165 | −0.054 | 0.000 | −0.497 | −0.982 | 1 |
R [%] | RMSE [mm/h] | |||||
---|---|---|---|---|---|---|
Pnet | RO | Infil | Pnet | RO | Infil | |
N | 98.1 | 83.4 | 96.8 | 0.131 | 0.187 | 0.264 |
N + LAI | 98.2 | 84.1 | 96.9 | 0.127 | 0.185 | 0.265 |
N + Veg% | 98.1 | 86.1 | 97.3 | 0.131 | 0.181 | 0.268 |
N + TIA | 98.1 | 86.1 | 97.3 | 0.131 | 0.181 | 0.268 |
N * LAI | 64.0 | 88.1 | 97.7 | 0.565 | 0.245 | 0.240 |
N * Veg% | 83.0 | 94.3 | 98.9 | 0.389 | 0.385 | 0.188 |
N * TIA | 72.2 | 94.7 | 99.0 | 0.496 | 0.073 | 0.335 |
N /LAI | 88.1 | 87.6 | 97.6 | 0.325 | 0.117 | 0.339 |
N /Veg% | 82.5 | 91.1 | 98.3 | 0.394 | 0.095 | 0.338 |
N /TIA | 12.5 | 87.2 | 97.5 | 0.881 | 0.198 | 0.260 |
N + LOG (LAI) | 98.2 | 77.5 | 96.9 | 0.126 | 0.185 | 0.265 |
N + LOG (Veg%) | 98.1 | 85.7 | 97.3 | 0.131 | 0.182 | 0.267 |
N + LOG (TIA) | 98.1 | 85.6 | 97.2 | 0.131 | 0.182 | 0.267 |
N + EXP (LAI) | 98.1 | 83.8 | 96.9 | 0.129 | 0.186 | 0.264 |
N + EXP (Veg%) | 98.1 | 86.2 | 97.3 | 0.131 | 0.181 | 0.268 |
N + EXP (TIA) | 98.1 | 86.0 | 97.3 | 0.131 | 0.181 | 0.268 |
Variables | tO | Manning Roughness | TIA | Veg% | hdO | PX |
---|---|---|---|---|---|---|
tO | 1 | |||||
Manning roughness | 0.686 | 1 | ||||
TIA | −0.685 | −0.950 | 1 | |||
Veg% | 0.677 | 0.975 | −0.982 | 1 | ||
hdO | 0.849 | 0.598 | −0.570 | 0.571 | 1 | |
PX | −0.110 | −0.428 | 0.440 | −0.467 | −0.014 | 1 |
Statistical Measure: | NSE [-] | Pbias [%] | RMSE [m/s] | RSR [-] |
---|---|---|---|---|
Good performance | >0.5 | <±25% | / | <1 |
WMB 2 m, 1 h (2015) | 0.89 | 12 | 0.09 | 0.45 |
WMB 20 m, 1 h (2015) | 0.88 | 6.7 | 0.09 | 0.45 |
WMB 20 m, 1 h (2016) | 0.80 | 17 | 0.15 | 0.67 |
WMB 20 m, 10 min (2015) | 0.76 | 11.1 | 0.205 | 0.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirion, C.; Bauwens, W.; Verbeiren, B. Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City. Water 2019, 11, 1763. https://doi.org/10.3390/w11091763
Wirion C, Bauwens W, Verbeiren B. Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City. Water. 2019; 11(9):1763. https://doi.org/10.3390/w11091763
Chicago/Turabian StyleWirion, Charlotte, Willy Bauwens, and Boud Verbeiren. 2019. "Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City" Water 11, no. 9: 1763. https://doi.org/10.3390/w11091763
APA StyleWirion, C., Bauwens, W., & Verbeiren, B. (2019). Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City. Water, 11(9), 1763. https://doi.org/10.3390/w11091763