Comparisons of Local Scouring for Submerged Square and Circular Cross-Section Piles in Steady Currents
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Tests
2.2. Uncertainties in Measurements
3. Results and Discussion
3.1. Key Points Scour Depths Evolutions
3.2. Formula Fitting
3.3. Profiles and Topographies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
z (cm) | ||
---|---|---|
40.06 | 22.54 | 0.000659 |
41.08 | 22.94 | 0.000709 |
38.07 | 21.65 | 0.000728 |
21.98 | 22.46 | 0.000728 |
43.37 | 22.51 | 0.000803 |
12.15 | 21.48 | 0.000901 |
32.23 | 21.80 | 0.000903 |
18.05 | 22.40 | 0.000935 |
26.04 | 21.79 | 0.000945 |
13.99 | 22.63 | 0.001003 |
34.03 | 22.10 | 0.001022 |
20.15 | 22.05 | 0.00104 |
30.01 | 22.52 | 0.001047 |
23.93 | 22.08 | 0.001057 |
16.08 | 22.23 | 0.001097 |
35.84 | 22.53 | 0.001309 |
10.06 | 19.55 | 0.00131 |
6.09 | 20.34 | 0.001353 |
4 | 16.38 | 0.001699 |
28.01 | 22.62 | 0.001844 |
8.01 | 19.99 | 0.001896 |
1.94 | 14.64 | 0.002259 |
1.03 | 14.93 | 0.00243 |
References
- Gaissinski, I.; Rovenski, V. Modeling in Fluid Mechanics: Instabilities and Turbulence; Chapman and Hall: NewYork, NY, USA, 2018; p. 513. [Google Scholar]
- Longo, S. Two-Phase Flow Modeling of Sediment Motion in Sheet-Flows above Plane Beds. J. Hydraul. Eng. 2005, 131, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Longo, S.; Valiani, A.; Lanza, L.; Liang, D. Experimental study of the grain-water mixture flow past a cylinder of different shapes. Eur. J. Mech. B Fluids 2013, 38, 101–113. [Google Scholar] [CrossRef]
- Ribberink, J.S.; Katopodi, I.; Ramadan, K.A.H.; Koelewijn, R.; Longo, S. Sediment Transport Under (NON)-Linear Waves and Currents. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1994; pp. 2527–2541. [Google Scholar]
- Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford: London, UK, 1997; p. 246. [Google Scholar]
- Ettema, R.; Constantinescu, G.; Melville, B.W. Flow-field complexity and design estimation of pier-scour depth: sixty years since Laursen and Toch. J. Hydraul. Eng. 2017, 143, 03117006. [Google Scholar] [CrossRef]
- Sui, T.T.; Zhang, C.; Jeng, D.; Guo, Y.; Zheng, J.; Zhang, W.; Shi, J. Wave-induced seabed residual response and liquefaction around a mono-pile foundation with various embedded depth. Ocean Eng. 2019, 173, 157–173. [Google Scholar] [CrossRef]
- Sumer, B.M.; Fredsøe, J. The Mechanics of Scour in the Marine Environment; World Scientific: Singapore, 2002; p. 536. [Google Scholar]
- Yang, L.P.; Guo, Y.K.; Shi, B.; Kuang, C.P.; Xu, WL.; Cao, S.Y. Study of scour around submarine pipeline with a rubber plate or rigid spoiler in wave conditions. J. Waterw. Port Coastal Ocean Eng. 2012, 138, 484–490. [Google Scholar] [CrossRef]
- Yang, Y.F.; Melville, B.W.; Macky, H.G.; Shamseldin, A.Y. Local Scour at Complex Bridge Piers in Close Proximity under Clear-Water and Live-Bed Flow Regime. Water 2019, 11, 1530. [Google Scholar] [CrossRef]
- Zhang, Q.; Draper, S.; Cheng, L.; Zhao, M.; An, H. Experimental Study of Local Scour Beneath Two Tandem Pipelines in Steady Current. Coastal Eng. J. 2017, 59, 1. [Google Scholar] [CrossRef]
- Tsutsui, T. Flow around a cylindrical structure mounted in a plane turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 2012, 104, 239–247. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, X.; Cheng, L.; Teng, B. Experimental study of local scour around subsea caissons in steady currents. Coastal Eng. 2012, 60, 30–40. [Google Scholar] [CrossRef]
- Dey, S.; Raikar, R.V.; Roy, A. Scour at submerged cylindrical obstacles under steady flow. J. Hydraul. Eng. 2008, 134, 105–109. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zang, Z. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coastal Eng. 2010, 57, 709–721. [Google Scholar] [CrossRef]
- Sarkar, A.; Ratha, D. Flow around submerged structures subjected to shallow submergence over plane bed. J. Fluids Struct. 2014, 44, 166–181. [Google Scholar] [CrossRef]
- Yao, W.D.; An, H.W.; Draper, S.; Cheng, L.; Harris, J.M. Experimental investigation of local scour around submerged piles in steady current. Coastal Eng. 2018, 142, 27–41. [Google Scholar] [CrossRef]
- Euler, T.; Herget, J. Obstacle-Reynolds-number based analysis of local scour at submerged cylinders. J. Hydraul. Res. 2011, 49, 267–271. [Google Scholar] [CrossRef]
- Chavan, R.; Kumar, B. Prediction of scour depth and dune morphology around circular bridge piers in seepage affected alluvial channels. Environ. Fluid Mech. 2018, 18, 923–945. [Google Scholar] [CrossRef]
- Cheng, N.S.; Zhao, K. Difference between static and dynamic angle of repose of uniform sediment grains. Int. J. Sediment Res. 2017, 32, 149–154. [Google Scholar] [CrossRef]
- Hills, R.G.; Maniaci, D.C.; Naughton, J.W. V and V Framework, Sandia National Laboratories. Available online: https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2015/157455.pdf (accessed on 29 August 2019).
- Bachynski, E.; Thys, M.; Delhaye, V. Dynamic response of a monopile wind turbine in waves: Experimental uncertainty analysis for validation of numerical tools. Appl. Ocean Res. 2019, 89, 96–114. [Google Scholar] [CrossRef]
- Coleman, H.W.; Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers; Wiley: Hoboken, NJ, USA, 2018; p. 376. [Google Scholar]
- Guo, J.K. Time-dependent clear-water scour for submerged bridge flows. J. Hydraul. Res. 2011, 49, 744–749. [Google Scholar] [CrossRef]
- Ettema, R. Scour at Bridge Piers. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 1980. [Google Scholar]
- Simpson, R.L. Junction flows. Ann. Rev. Fluid Mech. 2001, 33, 415–443. [Google Scholar] [CrossRef]
- Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Res. 2012, 37, 73–85. [Google Scholar] [CrossRef]
- Tseng, M.H.; Yen, C.L.; Song, C.C.S. Computation of three-dimensional flow around square and circular piers. Int. J. Numer. Methods Fluids 2000, 34, 207–227. [Google Scholar] [CrossRef]
- Guan, D.W.; Chiew, Y.M.; Wei, M.X.; Hsieh, S.C. Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int. J. Sediment Res. 2019, 34, 118–124. [Google Scholar] [CrossRef]
- Ozgoren, M. Flow structure in the downstream of square and circular cylinders. Flow Meas. Instrum. 2006, 17, 225–235. [Google Scholar] [CrossRef]
- Dargahi, B. Controlling mechanism of local scouring. J. Hydraul. Eng. 1990, 116, 1197–1214. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Median particle size of sand d50 (mm) | 0.65 |
Sediment’s non-uniformity σ = (d85/d15)0.5 | 1.27 |
Sediment’s density ρs (kg/m3) | 2650 |
Water depth h (cm) | 50 |
Water gravity g (m2/s) | 9.8 |
Water density ρ (kg/m3) | 1000 |
Kinematic viscosity of water ν (m2/s) | 10−6 |
Critical Shields parameter | 0.03 |
Depth averaged velocity U (cm/s) | 23.0 |
Shields parameter from skin friction θs | 0.01 |
Total Shields parameter θ | 0.01 |
Skin Nikuradse roughness (mm) | 1.625 |
Nikuradse roughness (mm) | 0.6 |
Boundary layer thickness δ (cm) | 43 |
Test | Pile Type | D (cm) | hc (cm) | t (hour) | dCe (cm) | dMe (cm) |
---|---|---|---|---|---|---|
1 | SC | 10 | 10 | 23.6 | 1.7 | 3.4 |
2 | SC | 10 | 20 | 23.6 | 2.4 | 3.4 |
3 | CC | 10 | 10 | 4 | 0.1 | 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Liang, B. Comparisons of Local Scouring for Submerged Square and Circular Cross-Section Piles in Steady Currents. Water 2019, 11, 1820. https://doi.org/10.3390/w11091820
Du S, Liang B. Comparisons of Local Scouring for Submerged Square and Circular Cross-Section Piles in Steady Currents. Water. 2019; 11(9):1820. https://doi.org/10.3390/w11091820
Chicago/Turabian StyleDu, Shengtao, and Bingchen Liang. 2019. "Comparisons of Local Scouring for Submerged Square and Circular Cross-Section Piles in Steady Currents" Water 11, no. 9: 1820. https://doi.org/10.3390/w11091820
APA StyleDu, S., & Liang, B. (2019). Comparisons of Local Scouring for Submerged Square and Circular Cross-Section Piles in Steady Currents. Water, 11(9), 1820. https://doi.org/10.3390/w11091820