Hydrogeochemical Assessment of Groundwater Quality of Mokopane Area, Limpopo, South Africa Using Statistical Approach
Abstract
:1. Introduction
2. Study Area
2.1. Site Description
2.2. Land-Use/Land-Cover Classification
3. Methodology
3.1. Flow Chart of Research Methodology
3.2. Sample Collections and Hydrochemical Analysis
3.3. Statistical Analysis
3.3.1. Saturation Index for Estimating Groundwater Mineralization
3.3.2. Water Quality Index
- Calculating relative weight: this was calculated using Equation (2).
- Calculating Q value: this was calculated using Equation (3).
- Finally, WQI was calculated using Equation (4).
3.3.3. Spatial Analyses
3.4. Mapping Spatial Distribution of Groundwater Quality
4. Results and Discussion
4.1. General Groundwater Chemistry
4.2. Graphical Presentations of Water Quality Data
4.3. Speciation Modelling for Selected Minerals
4.4. Groundwater Quality Index
4.5. Spatial Analysis of Groundwater Quality
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Boreholes | WQI | Water Quality |
---|---|---|
1 | 43.18 | Excellent water |
2 | 64.47 | Good water |
3 | 66.85 | Good water |
4 | 44.78 | Excellent water |
5 | 239.66 | Very poor water |
6 | 41.97 | Excellent water |
7 | 77.78 | Good water |
8 | 44.04 | Excellent water |
9 | 63.76 | Good water |
10 | 176.77 | Poor water |
11 | 44.81 | Excellent water |
12 | 56.34 | Good water |
References
- USGS. How Important Is Groundwater? Available online: https://www.usgs.gov/faqs/how-important-groundwater?qt-News_science_products=0#qt-news_science_products (accessed on 11 July 2019).
- Avtar, R.; Tripathi, S.; Kumar Aggarwal, A. Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India. Land 2019, 8, 124. [Google Scholar] [CrossRef]
- Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population-Urbanization-Energy Nexus: A Review. Resources 2019, 8, 136. [Google Scholar] [CrossRef]
- Ahmad, M.; Bastiaanssen, W.G.; Feddes, R. Sustainable use of groundwater for irrigation: A numerical analysis of the subsoil water fluxes. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2002, 51, 227–241. [Google Scholar] [CrossRef]
- Avtar, R.; Kharrazi, A. Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources 2019, 8, 149. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Tran, D.Q.; Ty, T.V.; Behera, H.C.; Kurasaki, M. Groundwater Quality Assessment Using Fuzzy-AHP in an Giang Province of Vietnam. Geosciences 2019, 9, 330. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Kurasaki, M.; Van Ty, T.; Tran, D.Q.; Le, K.N.; Avtar, R.; Rahman, M.; Osaki, M. Effects of Multi-Dike Protection Systems on Surface Water Quality in the Vietnamese Mekong Delta. Water 2019, 11, 1010. [Google Scholar] [CrossRef]
- Le, N.K.; Jha, K.M.; Jeong, J.; Gassman, W.P.; Reyes, R.M.; Doro, L.; Tran, Q.D.; Hok, L. Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC. Sustainability 2018, 10, 2665. [Google Scholar] [CrossRef]
- Zahedi, S. Modification of expected conflicts between Drinking Water Quality Index and Irrigation Water Quality Index in water quality ranking of shared extraction wells using Multi Criteria Decision Making techniques. Ecol. Indic. 2017, 83, 368–379. [Google Scholar] [CrossRef]
- Neisi, A.; Mirzabeygi Radfard, M.; Zeyduni, G.; Hamzezadeh, A.; Jalili, D.; Abbasnia, A.; Yousefi, M.; Khodadadi, R. Data on fluoride concentration levels in cold and warm season in City area of Sistan and Baluchistan Province, Iran. Data Brief. 2018, 18, 713–718. [Google Scholar] [CrossRef]
- Subramani, T.; Elango, L.; Damodarasamy, S.R. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ. Geol. 2005, 47, 1099–1110. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Singh, C.K.; Sahu, N.; Verma, R.L.; Thakur, J.K.; Mukherjee, S. Hydrogeochemical Assessment of Groundwater Quality of Bundelkhand, India Using Statistical Approach. Water Qual. Expo. Health 2013, 5, 105–115. [Google Scholar] [CrossRef]
- Kumar, P.; Ram, A. Chapter 4: Integrating major ion chemistry with statistical analysis for geochemical assessment of groundwater quality in coastal aquifer of Saijo plain, Ehime prefecture, Japan. In Water Quality: Indicators, Human Impact and Environmental Health; Nova Publication: Haryana, India, 2013; pp. 99–108. ISBN 978-1-62417-111-6. [Google Scholar]
- Avtar, R.; Kumar, P.; Surjan, A.; Gupta, L.; Roychowdhury, K. Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Environ. Earth Sci. 2013, 70, 1699–1708. [Google Scholar] [CrossRef]
- Matthess, G. The Properties of Groundwater; Department of Earth Science, J. Wiley and Sons Inc.: New York, NY, USA, 1982; p. 406. [Google Scholar]
- Kumar, P.; Kumar, M.; Ramanathan, A.L.; Tsujimura, M. Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environ. Geochem. Health 2010, 32, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Dat, T.Q.; Kanchit, L.; Thares, S.; Trung, N.H. Modeling the Influence of River Discharge and Sea Level Rise on Salinity Intrusion in Mekong Delta. In Proceedings of the 1st Environment Asia International Conference, Bangkok, Thailand, 23–26 March 2011; Volume 35, pp. 685–701. [Google Scholar]
- Ty, T.V. Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia. Water Res. Manag. 2012, 26, 1387–1407. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2006; Volume 1, Available online: http://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf (accessed on 8 July 2019).
- UNICEF. UNICEF Handbook on Water Quality; United Nations Childrens Fund: New York, NY, USA, 2008. [Google Scholar]
- Alagumuthu, G.; Rajan, M. Chemometric studies of water quality parameters of Sankarankovil block of Tirunelveli, Tamilnadu. J. Environ. Biol. 2010, 31, 581–586. [Google Scholar]
- Singh, C.K.; Rina, K.; Singh, R.; Shashtri, S.; Kamal, V.; Mukherjee, S. Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bull. Environ. Contam. Toxicol. 2011, 86, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, A.; Singh, C.K.; Saraswat, C.; Avtar, R.; Ramanathan, A.; Herath, S. Hydrogeochemical evolution and appraisal of groundwater quality in Panna District, Central India. Expo. Health 2016, 8, 19–30. [Google Scholar] [CrossRef]
- Chapman, D.V. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: Boca Raton, FL, USA, 1996; ISBN 0-419-21590-5. [Google Scholar]
- Olajire, A.A.; Imeokparia, F.E. Water Quality Assessment of Osun River: Studies on Inorganic Nutrients. Environ. Monit. Assess. 2001, 69, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Vasanthavigar, M.; Srinivasamoorthy, K.; Prasanna, M.V. Evaluation of groundwater suitability for domestic, irrigational, and industrial purposes: A case study from Thirumanimuttar river basin, Tamilnadu, India. Environ. Monit. Assess. 2012, 184, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Hua, A.K. Land use land cover changes in detection of water quality: A study based on remote sensing and multivariate statistics. J. Environ. Public Health 2017, 2017. [Google Scholar] [CrossRef]
- Khan, A.; Khan, H.H.; Umar, R. Impact of land-use on groundwater quality: GIS-based study from an alluvial aquifer in the western Ganges basin. Appl. Water Sci. 2017, 7, 4593–4603. [Google Scholar] [CrossRef] [Green Version]
- Narany, T.S.; Aris, A.Z.; Sefie, A.; Keesstra, S. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci. Total Environ. 2017, 599, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Gustafsson, P. High resolution satellite data and GIS as a tool for assessment of groundwater potential of semi-arid area. In Proceedings of the IXth Thematic Conference on Geologic Remote Sensing, Pasadena, CA, USA, 8–11 February 1993. [Google Scholar]
- Dabral, S.; Sharma, N. An Integrated Geochemical and Geospatial Approach for Assessing the Potential Ground Water Recharge Zones in Mahi-Narmada Inter Stream Doab Area, Gujarat, India. J. Environ. Earth Sci. 2013, 3, 134–144. [Google Scholar]
- Demir, Y.; Erşahin, S.; Güler, M.; Cemek, B.; Günal, H.; Arslan, H. Spatial variability of depth and salinity of groundwater under irrigated ustifluvents in the Middle Black Sea Region of Turkey. Environ. Monit. Assess. 2009, 158, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Baalousha, H. Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand. Agric. Water Manag. 2010, 97, 240–246. [Google Scholar] [CrossRef]
- Dash, J.; Sarangi, A.; Singh, D. Spatial variability of groundwater depth and quality parameters in the national capital territory of Delhi. Environ. Manag. 2010, 45, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Abbasnia, A.; Yousefi, N.; Mahvi, A.H.; Nabizadeh, R.; Radfard, M.; Yousefi, M.; Alimohammadi, M. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Hum. Ecol. Risk Assess. Int. J. 2019, 25, 988–1005. [Google Scholar] [CrossRef]
- Busari, O. Groundwater use in parts of the Limpopo Basin, South Africa. In Proceedings of the 3rd International Conference of Energy and Development-Environment-Biomedicine, Athens, Greece, 29–31 December 2009; pp. 13–18. [Google Scholar]
- Statistics. South Africa Statistics. South Africa (Web) 2016. Available online: http://www.statssa.gov.za/ (accessed on 8 July 2019).
- Climate Data. Climate Mokopane. Available online: https://en.climate-data.org/africa/south-africa/limpopo/mokopane-953/ (accessed on 1 July 2019).
- Mineral Council in South Africa. Chamber of Mines. Available online: https://www.mineralscouncil.org.za/ (accessed on 18 August 2019).
- USGS. Platinum-Group Elements in Southern Africa—Mineral. Inventory and an Assessment of Undiscovered Mineral Resources; US Department of the Interior: Reston, VA, USA, 2010; p. 126.
- Xin, X.; Li, K.; Finlayson, B.; Yin, W. Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China. Water Sci. Eng. 2015, 8, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Minh, H.V.T.; Ngoc, D.T.H.; Ngan, H.Y.; Men, H.V.; Van, T.N.; Ty, T.V. Assessment of Groundwater Level and Quality: A Case Study in O Mon and Binh Thuy Districts, Can Tho City, Vietnam. Naresuan Univ. Eng. J. 2016, 11, 25–33. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Busico, G.; Cuoco, E.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Tedesco, D.; Voudouris, K. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ. Pollut. 2018, 234, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Fetter, C.W. Applied Hydrogeology, 3rd ed.; Macmillan College Publishing Company: New York, NY, USA, 1994. [Google Scholar]
- Garrels, R.M.; Christ, C.L. Solutions, Minerals, and Equilibria; Harper & Row: New York, NY, USA, 1965. [Google Scholar]
- Tiwari, T.; Mishra, M. A preliminary assignment of water quality index of major Indian rivers. Indian J. Environ. Prot. 1985, 5, 276–279. [Google Scholar]
- Singh, S.; Hussian, A. Water quality index development for groundwater quality assessment of Greater Noida sub-basin, Uttar Pradesh, India. Cogent Eng. 2016, 3, 1177155. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Y.-G. Statistical Tools for Analyzing Water Quality Data. In Water Quality Monitoring and Assessment; InTech: London, UK, 2012; ISBN 978-953-51-0486-5. [Google Scholar] [Green Version]
- Singh, C.K.; Shashtri, S.; Mukherjee, S.; Kumari, R.; Avatar, R.; Singh, A.; Singh, R.P. Application of GWQI to Assess Effect of Land Use Change on Groundwater Quality in Lower Shiwaliks of Punjab: Remote Sensing and GIS Based Approach. Water Res. Manag. 2011, 25, 1881–1898. [Google Scholar] [CrossRef]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM National Conference, Las Vegas, NV, USA, 27–29 August 1968; ACM: New York, NY, USA, 1968; pp. 517–524. [Google Scholar]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Geographic Information Technology Tranning Alliance Distance-Based Interpolation. Available online: http://www.gitta.info/ContiSpatVar/en/html/Interpolatio_learningObject2.xhtml (accessed on 4 September 2019).
- Subramanian, V.; Saxena, K. Hydrogeochemistry of groundwater in the Delhi region of India. In Proceedings of the Hamburg Symposium, Hamburg, Germany, 18–19 August 1983. [Google Scholar]
- Parkhurst, D.L.; Appelo, C. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
Parameter | Parameter Standard | Qi | Weighted Factor (wi) | Wi |
---|---|---|---|---|
pH | 9.5 | 89.47 | 4 | 0.07 |
EC | 150 | 49.67 | 4 | 0.07 |
TDS | 1000 | 48.4 | 4 | 0.07 |
SS | 25 | 44 | 4 | 0.07 |
Ca | 150 | 31.6 | 2 | 0.04 |
K | 15 | 64.8 | 2 | 0.04 |
Mg | 200 | 34.34 | 2 | 0.04 |
Na | 200 | 27.38 | 3 | 0.06 |
Cl | 200 | 5.14 | 4 | 0.07 |
F | 1.5 | 16 | 5 | 0.09 |
NH4 | 0.2 | 130 | 5 | 0.09 |
NO3 | 1 | 34 | 5 | 0.09 |
SO4 | 400 | 0.58 | 2 | 0.04 |
Si | 9.2 | 22.39 | 3 | 0.06 |
PO4 | 10 | 0.50 | 2 | 0.04 |
COD | 75 | 24 | 3 | 0.06 |
Sum | 54 | 1 |
Parameter | Range | Average | St Dev | WHO Permissible Limit (WHO, 2011) |
---|---|---|---|---|
pH | 7.31–9.24 | 8.30 | 0.79 | - |
Depth (mbgl) | 60.0–169.0 | 103.42 | 33.3 | - |
Temp. (°C) | 25.40–26.3 | 25.8 | 0.25 | - |
TH (mg/L) | 81.62–440.46 | 269.52 | 105.0 | 50 |
EC (µs/cm) | 728.0–1895 | 1022.17 | 333.54 | - |
TDS (mg/L) | 473.00–1232 | 664.25 | 216.84 | - |
SS (mg/L) | 10.00–42 | 21.50 | 12.11 | - |
HCO3− (mg/L) | 162.50–544.6 | 346.67 | 106.81 | - |
CO32− (mg/L) | 0.00–119.2 | 41.32 | 43.96 | - |
Ca2+ (mg/L) | 2.50–53.02 | 19.65 | 19.00 | 200 |
K+ (mg/L) | 1.46–9.72 | 3.45 | 2.35 | 200 |
Mg2+ (mg/L) | 7.64–100.54 | 53.75 | 24.86 | 150 |
Na+ (mg/L) | 47.32–329.76 | 133.58 | 75.15 | 200 |
Mn (mg/L) | 0.01–0.48 | 0.11 | 0.15 | 1 |
Cl− (mg/L) | 7.21–188.19 | 83.24 | 50.76 | 600 |
F− (mg/L) | 0.24–3.39 | 1.35 | 0.98 | 1.5 |
NH4+ (mg/L) | 0.19–0.89 | 0.48 | 0.32 | 25 |
NO3− (mg/L) | 0.06–19.96 | 4.99 | 8.09 | 50 |
PO43− (mg/L) | 0.01–0.01 | 0.01 | 1.81E-18 | 50 |
SO42− (mg/L) | 2.01–203.18 | 44.79 | 58.44 | 400 |
Si (mg/L) | 0.43–36.46 | 10.12 | 12.75 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molekoa, M.D.; Avtar, R.; Kumar, P.; Minh, H.V.T.; Kurniawan, T.A. Hydrogeochemical Assessment of Groundwater Quality of Mokopane Area, Limpopo, South Africa Using Statistical Approach. Water 2019, 11, 1891. https://doi.org/10.3390/w11091891
Molekoa MD, Avtar R, Kumar P, Minh HVT, Kurniawan TA. Hydrogeochemical Assessment of Groundwater Quality of Mokopane Area, Limpopo, South Africa Using Statistical Approach. Water. 2019; 11(9):1891. https://doi.org/10.3390/w11091891
Chicago/Turabian StyleMolekoa, Mmasabata Dolly, Ram Avtar, Pankaj Kumar, Huynh Vuong Thu Minh, and Tonni Agustiono Kurniawan. 2019. "Hydrogeochemical Assessment of Groundwater Quality of Mokopane Area, Limpopo, South Africa Using Statistical Approach" Water 11, no. 9: 1891. https://doi.org/10.3390/w11091891
APA StyleMolekoa, M. D., Avtar, R., Kumar, P., Minh, H. V. T., & Kurniawan, T. A. (2019). Hydrogeochemical Assessment of Groundwater Quality of Mokopane Area, Limpopo, South Africa Using Statistical Approach. Water, 11(9), 1891. https://doi.org/10.3390/w11091891