Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Feed Water
2.1.2. Membranes
- a.
- Flat sheet membrane module: A flat sheet MF membrane module made up of polyvinylidene fluoride (PVDF) with a nominal pore size of 0.14 μm and surface area 0.2 m2 was used for the MF-GAC hybrid system. It had 8 vertical membrane sheets with 11 mm gap between any two adjacent membrane sheets. The dimensions of this membrane are: 11.5 cm (width), 10.5 cm (length), and 22.5 cm (height). It was manufactured by the A3 Membrane Company, Gelsenkirchen, Germany.
- b.
- Nanofiltration (NF): Two hydrophilic NF membranes, NP030 and NTR729HF, were used to assess the performance of NF in removing micro-pollutants. The NP030 (manufactured by Macrodyn®Nadir) was made of polyethersulfone with a molecular weight cutoff (MWCO) 400 Da and Zeta potential of −15 mV at pH 7 [28]. The NTR 729HF, manufactured by Nittto Denko, was made of Polyvinylalcoho/polyamides (Heterocyclic aromatic) with a MWCO 700 Da, and the Zeta potential was −100 mV [29].
- c.
- Reverse Osmosis (RO) membranes: RO membrane (manufactured by Woongjin Chemical) made of polyamides, with MWCO of 100 Da and zeta potential −21 mV [30] was used to investigate the RO removal performance of micro-pollutants from the feed water.
2.1.3. Granular-Activated Carbon (GAC)
2.2. Methodology
2.2.1. MF-GAC Hybrid System
2.2.2. Nanofiltration
2.2.3. Reverse Osmosis
2.2.4. Analysis of Micro-Pollutants
2.2.5. Estimation of Micro-Pollutants in the Reclaimed Water
2.2.6. Removal Efficiency (%) of Micro-Pollutants
3. Results
3.1. Micro-Pollutants in the Microfiltered BTSE
3.2. Removal of Micro-Pollutants by MF
3.3. Removal of Micro-Pollutants by MF-GAC Hybrid System
3.4. Removal of Micro-Pollutants by NF
3.5. Removal of Micro-Pollutants by RO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Bruggen, B. Chapter 3 The Global Water Recycling Situation. In Sustainability Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2010; Volume 2, pp. 41–62. [Google Scholar] [CrossRef]
- Del Pino, M.P.; Durham, B. Wastewater Reuse through Dual-Membrane Processes: Opportunities for Sustainable Water Resources. Desalination 1999, 124, 271–277. [Google Scholar] [CrossRef]
- Wintgens, T.; Melin, T.; Schäfer, A.; Khan, S.; Muston, M.; Bixio, D.; Thoeye, C. The Role of Membrane Processes in Municipal Wastewater Reclamation and Reuse. Desalination 2005, 178, 1–11. [Google Scholar] [CrossRef]
- Chapman, H. WRAMS, Sustainable Water Recycling. Desalination 2006, 188, 105–111. [Google Scholar] [CrossRef]
- Sedlak, D.L.; Gray, J.L.; Pinkston, K.E. Peer Reviewed: Understanding Microcontaminants in Recycled Water. Environ. Sci. Technol. 2000, 34, 508A–515A. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shen, J.; Zhong, Y.; Ding, T.; Dissanayake, P.D.; Yang, Y.; Tsang, Y.F.; Ok, Y.S. Sorption of Pharmaceuticals and Personal Care Products (PPCPs) from Water and Wastewater by Carbonaceous Materials: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 727–766. [Google Scholar] [CrossRef]
- Pal, A.; Gin, K.Y.-H.; Lin, A.Y.-C.; Reinhard, M. Impacts of Emerging Organic Contaminants on Freshwater Resources: Review of Recent Occurrences, Sources, Fate and Effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.S.; Xue, J.; Zhao, Y.; Taylor, A.A.; Zenobio, J.E.; Sun, Y.; Han, Z.; Salawu, O.A.; Zhu, Y. Abundance, Fate, and Effects of Pharmaceuticals and Personal Care Products in Aquatic Environments. J. Hazard. Mater. 2022, 424, 127284. [Google Scholar] [CrossRef] [PubMed]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef]
- Helmecke, M.; Fries, E.; Schulte, C. Regulating Water Reuse for Agricultural Irrigation: Risks Related to Organic Micro-Contaminants. Environ. Sci. Eur. 2020, 32, 4. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, S.; Vigneswaran, S.; Nguyen, T.V.; Loganathan, P.; Kandasamy, J. Use of Nanofiltration and Reverse Osmosis in Reclaiming Micro-Filtered Biologically Treated Sewage Effluent for Irrigation. Desalination 2015, 364, 119–125. [Google Scholar] [CrossRef]
- Abdallat, G.A.; Salameh, E.; Shteiwi, M.; Bardaweel, S. Pharmaceuticals as Emerging Pollutants in the Reclaimed Wastewater Used in Irrigation and Their Effects on Plants, Soils, and Groundwater. Water 2022, 14, 1560. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Ricart, M.; Köck-Schulmeyer, M.; Guasch, H.; Bonnineau, C.; Proia, L.; de Alda, M.L.; Sabater, S.; Barceló, D. Pharmaceuticals and Pesticides in Reclaimed Water: Efficiency Assessment of a Microfiltration–Reverse Osmosis (MF–RO) Pilot Plant. J. Hazard. Mater. 2015, 282, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrkajic, N.S.; Hama, J.R.; Strobel, B.W.; Hansen, H. Chr. B.; Rasmussen, L.H.; Pedersen, A.-K.; Christensen, S.C.B.; Hedegaard, M.J. Removal of Phytotoxins in Filter Sand Used for Drinking Water Treatment. Water Res. 2021, 205, 117610. [Google Scholar] [CrossRef] [PubMed]
- Kanaujiya, D.K.; Paul, T.; Sinharoy, A.; Pakshirajan, K. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: A Review. Curr. Pollut. Rep. 2019, 5, 112–128. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Nguyen, T.V.; Jeong, S.; Kandasamy, J.; Vigneswaran, S. Submerged Membrane—(GAC) Adsorption Hybrid System in Reverse Osmosis Concentrate Treatment. Sep. Purif. Technol. 2015, 146, 8–14. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M.A.H.; Vigneswaran, S. Submerged Membrane Filtration Adsorption Hybrid System for the Removal of Organic Micropollutants from a Water Reclamation Plant Reverse Osmosis Concentrate. Desalination 2017, 401, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Jamil, S.; Loganathan, P.; Khan, S.J.; McDonald, J.A.; Kandasamy, J.; Vigneswaran, S. Enhanced Nanofiltration Rejection of Inorganic and Organic Compounds from a Wastewater-Reclamation Plant’s Micro-Filtered Water Using Adsorption Pre-Treatment. Sep. Purif. Technol. 2021, 260, 118207. [Google Scholar] [CrossRef]
- Rostvall, A.; Zhang, W.; Dürig, W.; Renman, G.; Wiberg, K.; Ahrens, L.; Gago-Ferrero, P. Removal of Pharmaceuticals, Perfluoroalkyl Substances and Other Micropollutants from Wastewater Using Lignite, Xylit, Sand, Granular Activated Carbon (GAC) and GAC+Polonite® in Column Tests—Role of Physicochemical Properties. Water Res. 2018, 137, 97–106. [Google Scholar] [CrossRef]
- Ullberg, M.; Lavonen, E.; Köhler, S.J.; Golovko, O.; Wiberg, K. Pilot-Scale Removal of Organic Micropollutants and Natural Organic Matter from Drinking Water Using Ozonation Followed by Granular Activated Carbon. Environ. Sci. Water Res. Technol. 2021, 7, 535–548. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Farid, M.U.; Kharraz, J.A.; Choi, J.; Tang, C.Y.; Nghiem, L.D.; Jang, A.; An, A.K. Removal of Organic Micropollutants Using Advanced Membrane-Based Water and Wastewater Treatment: A Review. J. Membr. Sci. 2020, 598, 117672. [Google Scholar] [CrossRef]
- Gidstedt, S.; Betsholtz, A.; Falås, P.; Cimbritz, M.; Davidsson, Å.; Micolucci, F.; Svahn, O. A Comparison of Adsorption of Organic Micropollutants onto Activated Carbon Following Chemically Enhanced Primary Treatment with Microsieving, Direct Membrane Filtration and Tertiary Treatment of Municipal Wastewater. Sci. Total Environ. 2022, 811, 152225. [Google Scholar] [CrossRef]
- Ojajuni, O.; Saroj, D.; Cavalli, G. Removal of Organic Micropollutants Using Membrane-Assisted Processes: A Review of Recent Progress. Environ. Technol. Rev. 2015, 4, 17–37. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Maeng, S.K.; Fujioka, T.; Kennedy, M.; Amy, G. Proposing Nanofiltration as Acceptable Barrier for Organic Contaminants in Water Reuse. J. Membr. Sci. 2010, 362, 334–345. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Jamil, S.; Loganathan, P.; Listowski, A.; Kandasamy, J.; Khourshed, C.; Vigneswaran, S. Simultaneous Removal of Natural Organic Matter and Micro-Organic Pollutants from Reverse Osmosis Concentrate Using Granular Activated Carbon. Water Res. 2019, 155, 106–114. [Google Scholar] [CrossRef]
- Kaya, Y.; Gönder, Z.B.; Vergili, I.; Barlas, H. The Effect of Transmembrane Pressure and PH on Treatment of Paper Machine Process Waters by Using a Two-Step Nanofiltration Process: Flux Decline Analysis. Desalination 2010, 250, 150–157. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Ngo, H.H.; Kim, I.S.; Ben Aim, R. Foulant Characterization of the NF Membranes with and without Pretreatment of Biologically Treated Wastewater. Water Sci. Technol. 2005, 51, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Shon, H.K.; Vigneswaran, S.; Zareie, M.H.; Aim, R.B.; Lee, E.; Lee, J.; Cho, J.; Kim, I.S. Physico-Chemical Pretreatment to Seawater Reverse Osmosis (SWRO): Organic Characterization and Membrane Autopsy. Desalination 2009, 236, 282–290. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Johir, M.A.H.; Nguyen, T.V.; Kandasamy, J.; Vigneswaran, S. Experimental Evaluation of Microfiltration–Granular Activated Carbon (MF–GAC)/Nano Filter Hybrid System in High Quality Water Reuse. J. Membr. Sci. 2015, 476, 1–9. [Google Scholar] [CrossRef]
- Devaisy, S. Membrane Hybrid System in High Quality Water Reuse. Doctoral Thesis, University of Technology, Sydney, Australia, 2015. [Google Scholar]
- Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A. Occurrence of Organic Microcontaminants in the Wastewater Treatment Process. A Mini Review. J. Hazard. Mater. 2012, 239–240, 1–18. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, Z.; Hollert, H.; Zhou, S.; Deutschmann, B.; Seiler, T.-B. Toxicity of 10 Organic Micropollutants and Their Mixture: Implications for Aquatic Risk Assessment. Sci. Total Environ. 2019, 666, 1273–1282. [Google Scholar] [CrossRef]
- Ricart, M.; Barceló, D.; Geiszinger, A.; Guasch, H.; de Alda, M.L.; Romaní, A.M.; Vidal, G.; Villagrasa, M.; Sabater, S. Effects of Low Concentrations of the Phenylurea Herbicide Diuron on Biofilm Algae and Bacteria. Chemosphere 2009, 76, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Butler, G.L.; Deason, T.R.; O’Kelley, J.C. The Effect of Atrazine, 2,4-D, Methoxychlor, Carbaryl and Diazinon on the Growth of Planktonic Algae. Br. Phycol. J. 1975, 10, 371–376. [Google Scholar] [CrossRef]
- Capdevielle, M.; Van Egmond, R.; Whelan, M.; Versteeg, D.; Hofmann-Kamensky, M.; Inauen, J.; Cunningham, V.; Woltering, D. Consideration of Exposure and Species Sensitivity of Triclosan in the Freshwater Environment. Integr. Environ. Assess. Manag. 2008, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Mons, R.; Vollat, B.; Fraysse, B.; Paxéus, N.; Lo Giudice, R.; Pollio, A.; Garric, J. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ. Toxicol. Chem. 2004, 23, 1344. [Google Scholar] [CrossRef] [Green Version]
- Orias, F.; Perrodin, Y. Characterisation of the Ecotoxicity of Hospital Effluents: A Review. Sci. Total Environ. 2013, 454–455, 250–276. [Google Scholar] [CrossRef]
- Golovko, O.; de Brito Anton, L.; Cascone, C.; Ahrens, L.; Lavonen, E.; Köhler, S.J. Sorption Characteristics and Removal Efficiency of Organic Micropollutants in Drinking Water Using Granular Activated Carbon (GAC) in Pilot-Scale and Full-Scale Tests. Water 2020, 12, 2053. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Zhang, F.; Yu, H.; Zhang, Q.; Liu, X. The Removal of Trimethoprim and Sulfamethoxazole by a High Infiltration Rate Artificial Composite Soil Treatment System. Front. Environ. Sci. Eng. 2017, 11, 12. [Google Scholar] [CrossRef]
- De Ridder, D.J.; Verliefde, A.R.D.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Rietveld, L.C.; van der Aa, L.T.J.; Amy, G.L.; van Dijk, J.C. Influence of Natural Organic Matter on Equilibrium Adsorption of Neutral and Charged Pharmaceuticals onto Activated Carbon. Water Sci. Technol. 2011, 63, 416–423. [Google Scholar] [CrossRef]
- Mansour, F.; Al-Hindi, M.; Yahfoufi, R.; Ayoub, G.M.; Ahmad, M.N. The Use of Activated Carbon for the Removal of Pharmaceuticals from Aqueous Solutions: A Review. Rev. Environ. Sci. Biotechnol. 2018, 17, 109–145. [Google Scholar] [CrossRef]
- Tang, L.; Ma, X.Y.; Wang, Y.; Zhang, S.; Zheng, K.; Wang, X.C.; Lin, Y. Removal of Trace Organic Pollutants (Pharmaceuticals and Pesticides) and Reduction of Biological Effects from Secondary Effluent by Typical Granular Activated Carbon. Sci. Total Environ. 2020, 749, 141611. [Google Scholar] [CrossRef]
- Das, S.; Ray, N.M.; Wan, J.; Khan, A.; Chakraborty, T.; Ray, M.B. Micropollutants in Wastewater: Fate and Removal Processes. In Physico-Chemical Wastewater Treatment and Resource Recovery; Farooq, R., Ahmad, Z., Eds.; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Castaño Osorio, S.; Biesheuvel, P.M.; Spruijt, E.; Dykstra, J.E.; van der Wal, A. Modeling Micropollutant Removal by Nanofiltration and Reverse Osmosis Membranes: Considerations and Challenges. Water Res. 2022, 225, 119130. [Google Scholar] [CrossRef]
- Żyłła, R.; Foszpańczyk, M.; Kamińska, I.; Kudzin, M.; Balcerzak, J.; Ledakowicz, S. Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals. Membranes 2022, 12, 150. [Google Scholar] [CrossRef]
- Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Mohammad, A.W.; Mohamed Zuki, F.; Jamari, N.L.-A. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials 2022, 12, 437. [Google Scholar] [CrossRef]
- Kimura, K.; Iwase, T.; Kita, S.; Watanabe, Y. Influence of Residual Organic Macromolecules Produced in Biological Wastewater Treatment Processes on Removal of Pharmaceuticals by NF/RO Membranes. Water Res. 2009, 43, 3751–3758. [Google Scholar] [CrossRef]
- Shirley, J.; Mandale, S.; Kochkodan, V. Influence of Solute Concentration and Dipole Moment on the Retention of Uncharged Molecules with Nanofiltration. Desalination 2014, 344, 116–122. [Google Scholar] [CrossRef]
- Dolar, D.; Drašinac, N.; Košutić, K.; Škorić, I.; Ašperger, D. Adsorption of Hydrophilic and Hydrophobic Pharmaceuticals on RO/NF Membranes: Identification of Interactions Using FTIR. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C. The Role of Electrostatic Interactions on the Rejection of Organic Solutes in Aqueous Solutions with Nanofiltration. J. Membr. Sci. 2008, 322, 52–66. [Google Scholar] [CrossRef]
- Silva, L.L.S.; Moreira, C.G.; Curzio, B.A.; da Fonseca, F.V. Micropollutant Removal from Water by Membrane and Advanced Oxidation Processes—A Review. J. Water Resour. Prot. 2017, 9, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Licona, K.P.M.; Geaquinto, L.R.d.O.; Nicolini, J.V.; Figueiredo, N.G.; Chiapetta, S.C.; Habert, A.C.; Yokoyama, L. Assessing Potential of Nanofiltration and Reverse Osmosis for Removal of Toxic Pharmaceuticals from Water. J. Water Process Eng. 2018, 25, 195–204. [Google Scholar] [CrossRef]
Micro-Pollutants | Class of Micro-Pollutants | Log Kow (pH 7) | Molecular Weight (MW) (g/mol) | Precursor Ion (m/z) | Charge of Molecule | Electrospray Ionization (ESI) Mode | LOQ (ng/L) | Actual Conc (ng/L) in MF/BTSE | Estimated Conc. (ng/L) in Reclaimed Water (Max Limit) |
---|---|---|---|---|---|---|---|---|---|
Positive (+); Neutral (0); Negative (−) | Blending Proportion | ||||||||
CMF:RO (Mixing Ratio 80:20–50:50) | |||||||||
Ketoprofen | Analgesics | 3.12 | 254 | 252.80 | − | − | 5 | 95.2 | 47.5–76 |
Naproxen | Analgesics | 3.18 | 230 | 228.90 | − | − | 5 | 69–313 | 156–250 |
Ibuprofen | Analgesics | 3.97 | 206 | 204.90 | − | − | 5 | 38–70 | 35–56 |
Gemfibrozil | Lipid regulator | 4.77 | 250 | 248.90 | − | − | 5 | 24–430 | 215–344 |
Diclofenac | Analgesic | 4.51 | 296 | 293.90 | − | − | 5 | 8–200 | 100–160 |
Triclosan | Anti-microbial agent | 5.34 | 290 | 286.60 | 0 | − | 5 | 6–90 | 45–72 |
Triclocarban | Anti-microbial agent | 4.90 | 316 | 312.90 | 0 | − | 10 | 12–38 | 19–30 |
Atenolol | Beta blocker | 0.16 | 266 | 267.20 | + | + | 5 | 78–186 | 93–148 |
Sulfamethoxazole | Therapeutic | 0.89 | 253 | 254.00 | − | + | 5 | 84–114 | 57–91 |
Caffeine | Stimulant | −0.07 | 194 | 195.00 | 0 | + | 10 | 86–675 | 337–540 |
Trimethoprim | Anti-infective | 0.91 | 290 | 291.10 | +/0 | + | 5 | 26–229 | 114–183 |
TCEP Tris(2-chloroethyl) phosphate) | Flame retardant | 1.44 | 250 | 284.90 | + | 10 | 29–99 | 49–79 | |
Carbamazepine | Anti-analgesics | 2.45 | 236 | 237.00 | 0 | + | 5 | 231–541 | 270–432 |
Fluoxetine | Anti-depressant | 4.10 | 309 | 310.00 | + | + | 5 | 8–24.7 | 12–20 |
Amitriptyline | Anti-depressant | 4.92 | 277 | 278.20 | + | + | 5 | 5–37 | 18–27 |
Primidone | Therapeutic | 0.91 | 218 | 219.20 | − | + | 5 | 8–117 | 58–94 |
Verapamil | Therapeutic | 3.79 | 454 | 455.40 | + | + | 5 | 8–28 | 14–22 |
Simazine | Herbicide | 2.18 | 201 | 202.00 | 0 | + | 5 | 7–11 | 5–9 |
Diazinon | Insecticide | 3.81 | 304 | 305.10 | + | 5 | 10–104 | 52–83 | |
Diuron | Herbicide | 2.68 | 233 | 233.02 | 0 | 5 | 35.7–42.8 | 21–34 |
Micro-Pollutants | Influent (MF Feed) (ng/L) | MF Effluent (ng/L) | Removal (%) |
---|---|---|---|
Amtriptyline | 19 | 13 | 30 |
Atenolol | 104 | 84 | 19 |
Caffeine | 73 | 68 | 6 |
Carbamazepine | 393 | 369 | 6 |
Diclofenac | 164 | 152 | 7 |
Fluoxetine | 19 | 9 | 53 |
Gemfibrozil | 334 | 298 | 11 |
Ketoprofen | 114 | 95 | 17 |
Naproxen | 820 | 522 | 36 |
Primidone | 29 | 26 | 12 |
Sulfamethoxazole | 61 | 61 | 0 |
Triclocarban | 81 | 41 | 50 |
Triclosan | 91 | 5 | 95 |
Trimethoprim | 236 | 208 | 12 |
Verapamil | 35 | 27 | 23 |
Micro-Pollutants | Influent Feed Water (ng/L) | Effluent MF-GAC Hybrid System (ng/L) | Removal (%) by MF-GAC |
---|---|---|---|
Naproxen | 211 | 19 | 90.9 |
Ibuprofen | 70 | 5 | 92.8 |
Gemfibrozil | 430 | 16 | 96.3 |
Triclosan | 90 | 5 | 94.4 |
Diclofenac | 131 | 18 | 86.6 |
Triclocarban | 38 | 10 | 73.7 |
Atenolol | 220 | 7 | 96.6 |
Sulfamethoxazole | 114 | 30 | 73.7 |
Caffeine | 675 | 151 | 77.6 |
Trimethoprim | 229 | 7 | 97.0 |
TCEP | 56 | 10 | 82.1 |
Carbamazepine | 434 | 36 | 91.8 |
Fluoxetine | 20 | 5 | 74.6 |
Amtriptyline | 37 | 5 | 86.5 |
Primidone | 11 | 5 | 54.4 |
Verapamil | 28 | 5 | 82.2 |
NP030 | NTR729 HF | |||||
---|---|---|---|---|---|---|
Micro-Pollutants | Influent (ng/L) | Effluent (ng/L) | Removal (%) | Influent (ng/L) | Effluent (ng/L) | Removal (%) |
Atenolol | 220 | 76 | 65.4 | 83 | 20 | 75.5 |
Sulfamethoxazole | 114 | 80 | 29.5 | 174 | <5 | 97.1 |
Caffeine | 675 | 631 | 6.5 | 88 | 57 | 34.9 |
Trimethoprim | 229 | 146 | 36.2 | 146 | 31 | 78.7 |
Carbamazepine | 434 | 344 | 20.7 | 376 | 50 | 86.7 |
Amtriptyline | 37 | 9 | 76.8 | 11 | <5 | 55.4 |
Primidone | 11 | <10 | >10 | 26 | <5 | 80.9 |
Verapamil | 28 | 8 | 71.3 | 12 | <5 | 57.3 |
Diazinon | 104 | 6 | 94.2 | 98 | <5 | 94.9 |
Naproxen | 211 | 47 | 77.7 | 84 | <5 | 94.0 |
Gemfibrozil | 430 | 122 | 71.6 | 31 | 9 | 72.2 |
Diclofenac | 131 | 71 | 46.0 | 57 | <5 | 91.2 |
Triclocarban | 38 | <10 | 73.7 | 10 | <9 | >10 |
Diuron | 43 | 25 | 41.8 | 94 | 49 | 47.9 |
Fluoxetine | 20 | 11 | 44.7 | ND | - | - |
Ibuprofen | 70 | 17 | 76.3 | ND | - | - |
Triclosan | 90 | 25 | 72.5 | ND | - | - |
Micro-Pollutants | Influent (RO Feed) (ng/L) | Effluent (RO Permeate) (ng/L) | Removal (%) |
---|---|---|---|
Caffeine | 675 | 21.1 | 97 |
Carbamazepine | 434 | 11 | 97 |
Gemfibrozil | 430 | <5 | >99 |
Trimethoprim | 229 | <5 | >98 |
Atenolol | 220 | 5.11 | 98 |
Naproxen | 211 | <5 | >98 |
Diclofenac | 131 | <5 | >96 |
Sulfamethoxazole | 114 | <5 | >96 |
Triclosan | 90 | 7.04 | 92 |
Ibuprofen | 70 | <5 | >93 |
Triclocarban | 38 | <10 | 74 |
Amtriptyline | 37 | <5 | >86 |
Verapamil | 28 | <5 | >82 |
Fluoxetine | 20 | <5 | >75 |
Primidone | 11 | <5 | >53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devaisy, S.; Kandasamy, J.; Nguyen, T.V.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water. Water 2022, 14, 3708. https://doi.org/10.3390/w14223708
Devaisy S, Kandasamy J, Nguyen TV, Johir MAH, Ratnaweera H, Vigneswaran S. Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water. Water. 2022; 14(22):3708. https://doi.org/10.3390/w14223708
Chicago/Turabian StyleDevaisy, Sukanyah, Jaya Kandasamy, Tien Vinh Nguyen, Md Abu Hasan Johir, Harsha Ratnaweera, and Saravanamuthu Vigneswaran. 2022. "Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water" Water 14, no. 22: 3708. https://doi.org/10.3390/w14223708