Evolution Process of Ancient Landslide Reactivation under the Action of Rainfall: Insights from Model Tests
Abstract
:1. Introduction
2. Landslide Prototype
3. Materials and Methods
3.1. Model Test Equipment
3.2. Similar Materials
3.3. Test Conditions
3.4. Instrument Layout
4. Results
4.1. Deformation Processes of Landslides
4.2. Variation in Pore Water Pressure
4.3. Variation in Soil Pressure
5. Discussion
5.1. The Mechanism of Ancient Landslide Reactivation
5.2. The Evolution Process of Ancient Landslide
5.3. Limitations and Inspirations of Model Test
6. Conclusions
- The influence of rainfall on the deformation process, instability, and range of an ancient landslide is closely related to cracks. When there are no cracks in an ancient landslide, the deformation and failure of the ancient landslide are concentrated mainly in the front part, with the impact mainly limited to the shallow sliding body at the front part of the ancient landslide. However, when cracks develop on an ancient landslide, rainwater can rapidly infiltrate into the deep sliding zone along the cracks, resulting in overall deformation and instability of the ancient landslide.
- Under rainfall conditions, significant differences can be observed in the response characteristics of pore water pressure and soil pressure in the deep parts of ancient landslides with and without cracks. When cracks develop on ancient landslides, the time required for rainwater to infiltrate into the deep sliding area is twice as long as in ancient landslides with cracks. Rainfall first causes changes in the pore water pressure and soil pressure at the foot of the ancient landslide, followed by the middle of the ancient landslide, with the least impact at the rear of the ancient landslide. When cracks develop on an ancient landslide, rainfall first causes changes in the pore water pressure and soil pressure at the mid-rear of the ancient landslide, followed by changes in the pore water pressure and soil pressure at the foot of the ancient landslide.
- The reactivation mechanisms of ancient landslides under rainfall conditions and the coupling effect of rainfall and cracks show significant differences. In cases where there are no cracks present, the overall behavior involves erosion at the toe of the ancient landslide and progressive localized failure at the front edge, with the impact range and depth being limited. However, when cracks develop on ancient landslides, the mechanical behavior of the reactivation mechanism becomes more complex, including mid-rear ancient landslide creeping, tensile cracks developing at the mid-rear of the ancient landslide, localized sliding at the front edge, extension of tensile cracks, extension of the local sliding range, accelerated creeping, and progressive failure at the mid-rear of the ancient landslide.
- Cracks play an important role in promoting the deformation and failure of ancient landslides. The characteristics of crack development in different stages of the reactivation of ancient landslides vary. It is recommended to consider the influence of crack development characteristics of ancient landslides, such as crack location, quantity, depth, length, and orientation, on their stability in the evaluation of landslide stability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation: Special Report 247; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Lu, Z.Y. Theory of landslide classification and sliding historical category. In Proceedings of the Sichuan Landslide Research and Prevention Experience Exchange Meeting, Chengdu, China, 1983. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes, special report, transportation research board. Nat. Acad. Sci. 1996, 247, 36–75. [Google Scholar]
- Zhang, Y.S.; Guo, C.B.; Lan, H.X.; Zhou, N.J.; Yao, X. Reactivation mechanism of ancient giant landslides in the tectonically active zone: A case study in Southwest China. Environ. Earth. Sci. 2015, 74, 1719–1729. [Google Scholar] [CrossRef]
- Li, Y.F.; Ji, Q.K. Short discussion on the distinction of paleo landslides. West-China Explor. Eng. 2006, 128, 287–296. [Google Scholar]
- Zhang, M.S.; Li, T.L. Triggering factors and forming mechanism of loess landslides. J. Eng. Geol. 2011, 19, 530–540. [Google Scholar]
- Iverson, R.M.; George, D.L.; Allstadt, K.; Reid, M.E.; Collins, B.D.; Vallance, J.W.; Schilling, S.P.; Godt, J.W.; Cannon, C.M.; Magirl, C.S.; et al. Landslide mobility and hazards: Implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 2015, 412, 197–208. [Google Scholar] [CrossRef]
- Guo, C.B.; Zhang, Y.S.; Li, X.; Ren, S.S.; Yang, Z.H.; Wu, R.A.; Jin, J.J. Reactivation of giant Jiangdingya paleo landslide in Zhouqu County, Gansu Province, China. Landslides 2019, 17, 179–190. [Google Scholar] [CrossRef]
- Notti, D.; Wrzesniak, A.; Dematteis, N.; Lollino, P.; Fazio, N.L.; Zucca, F.; Giordan, D. A multidisciplinary investigation of deep-seated landslide reactivation triggered by an extreme rainfall event: A case study of the Monesi di Mendatica landslide, Ligurian Alps. Landslides 2021, 18, 2341–2365. [Google Scholar] [CrossRef]
- Macciotta, R.; Hendry, M.; Martin, C.D. Developing an early warning system for a very slow landslide based on displacement monitoring. Nat. Hazards. 2016, 81, 887–907. [Google Scholar] [CrossRef]
- Muller, L. New Considerations on the Vaiont Slide. Rock Mech. Eng. Geol. 1968, 6, 1–91. [Google Scholar]
- Liu, G.; Tong, F.G.; Zhao, Y.T.; Tian, B. A force transfer mechanism for triggering landslides during rainfall infiltration. J. Mt. Sci. 2018, 15, 2480–2491. [Google Scholar] [CrossRef]
- Hu, X.W.; Huang, R.Q.; Zhu, H.Y.; Lv, X.P.; Zhang, X.; Shi, Y.B. Earthquake reactivation effects and stability study of malingyan landslide in Tangjiashan dammed lake. Chin. J. Rock Mech. Eng. 2009, 28, 1270–1278. [Google Scholar]
- Guo, C.B.; Yan, Y.Q.; Zhang, Y.S.; Wu, R.A.; Yang, Z.H.; Li, X.; Ren, S.S.; Zhang, Y.Y.; Wu, Z.K.; Liu, J.X. Research Progress and Prospect of the Failure Mechanism of Large Deep-seated Creeping Landslides in the Tibetan Plateau, China. Earth Sci. 2022, 47, 3677–3700. Available online: https://kns.cnki.net/kcms/detail/42.1874.P.20220808.1553.020.html (accessed on 14 January 2024).
- Yang, Y.T.; Dai, Z.W.; Lu, Y.S.; Zhang, C.Y.; Yan, H.; Hou, X.F.; Tang, J. Deformation characteristics and stability changes characteristics of reservoir landslides with double-sliding zones. Earth Sci. 2022, 1–15. Available online: https://kns.cnki.net/kcms/detail/42.1874.P.20220809.1707.013.html (accessed on 14 January 2024).
- Deng, L.X.; Xu, S.G.; Zheng, T.; Wu, J.; He, S.L. Analysis on the Reactivation Deformation Characteristics and Stability of Paleolandslide in Yongshan County. Sci. Tech. Eng. 2023, 23, 2308–2316. [Google Scholar]
- Govi, M.; Sorzana, P.; Tropeano, D. Landslide mapping as evidence of extreme regional events. Stud. Geomorphol Carpatho-Balc. 1982, 15, 81–98. [Google Scholar]
- Giannecchini, R. Rainfall triggering soil slips in the southern Aquan Alps. Adv. Geosci. 2005, 2, 21–24. [Google Scholar] [CrossRef]
- Gil, E.; Długoszm, M. Threshold values of rainfalls triggering selected deep-seated landslides in the polish Flysch Carpathians. Stud. Geomorphol Carpatho-Balc. 2006, 40, 21–43. [Google Scholar]
- De Vita, P.; Reichenbach, P.; Bathurst, J.C.; Marco, B.; Crosta, G.; Crozier, M.; Glade, T.; Guzzetti, F.; Hansen, A.; Wasowski, J. Rainfall-triggered landslides: A reference list. Environ. Geol. 1998, 35, 219–233. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Borja, R.I.; White, J.A. Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech. 2010, 5, 1–14. [Google Scholar] [CrossRef]
- Borja, R.I.; White, J.A.; Liu, X.; Wu, W. Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 236–248. [Google Scholar] [CrossRef]
- Cojean, R.; Cai, Y.J. Analysis and modeling of slope stability in the Three-Gorges Dam reservoir (China)—The case of Huangtupo landslide. J. Mt. Sci. 2011, 8, 166–175. [Google Scholar] [CrossRef]
- Lee, Y.F.; Chi, Y.Y. Rainfall-induced landslide risk at Lushan. Taiwan. Eng. Geol. 2011, 123, 113–121. [Google Scholar] [CrossRef]
- Qi, S.; Vanapalli, S.K. Computers and Geotechnics Influence of swelling behavior on the stability of an infinite unsaturated expansive soil slope. Comput. Geotech. 2016, 76, 154–169. [Google Scholar] [CrossRef]
- Zhou, J.W.; Cui, P.; Hao, M.H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Chen, M.L.; Lv, P.F.; Zhang, S.L.; Zhou, J.W.; Chen, M.L.; Chen, X.Z. Time evolution and spatial accumulation of progressive failure for Xinhua slope in the Dagangshan reservoir, Southwest China. Landslides 2018, 15, 565–580. [Google Scholar] [CrossRef]
- Li, S.H.; Wang, Y.N. Selection study of computational parameters for DEM in geomechanics. Chin. J. Rock Mech. Eng. 2004, 23, 3642–3651. [Google Scholar]
- Wang, Y.; Li, X.; He, J.M.; Wu, Y.F.; Wu, Y.S. Research status and prospect of rock and soil aggregate. J. Eng. Geol. 2014, 22, 112–123. [Google Scholar] [CrossRef]
- Hu, F.; Li, Z.Q.; Hu, R.L.; Zhou, Y.X.; Yuan, R.Q. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test. Chin. J. Rock Mech. Eng. 2018, 37, 766–778. [Google Scholar] [CrossRef]
- Li, A.G.; Yue, Z.Q.; Tham, L.G.; Li, A.G.; Law, K.T. Field-monitored variations of soil moisture and matric suction in a saprolite slope. Can. Geotech. J. 2005, 42, 13–26. [Google Scholar] [CrossRef]
- Li, T.L.; Xi, Y.; Hou, X.K. Mechanism of surface water infiltration induced deep loess landslide. J. Eng. Geol. 2018, 26, 1113–1120. [Google Scholar] [CrossRef]
- Hu, R.L.; Lc, X.; Wang, Y.; Gao, W.; Xia, J.G.; Li, Z.Q.; Gao, W.W.; Sun, Y.S. Research on engineering geomechanics and structural effect of soil-rock mixture. J. Eng. Geol. 2020, 28, 255–281. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, J.h.; Li, Y.; Duan, W.F.; Yang, R.C.; Shu, J.C.; Li, H.W.; Tao, S.Y.; Zheng, S.Z. Mechanism of colluvial landslide induction by rainfall and slope construction: A case study. J. Mt. Sci. 2021, 18, 1013–1033. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Wu, R.A.; Ren, S.S. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides. Chin. J. Rock Mech. Eng. 2021, 40, 777–789. [Google Scholar] [CrossRef]
- Take, W.A.; Bolton, M.D.; Wong, P.C.P.; Yeung, F.J. Evaluation of landslide triggering mechanisms in model fill slopes. Landslides 2004, 1, 173–184. [Google Scholar] [CrossRef]
- Rahardjo, H.; Lee, T.; Leong, E.C.; Rezaur, R. Response of a residual soil slope to rainfall. Can. Geotech. J. 2005, 42, 340–351. [Google Scholar] [CrossRef]
- Luo, X.Q.; Liu, D.F.; Wu, J.; Cheng, S.G.; Sheng, H.; Xu, K.X.; Huang, X.B. Model test study on landslide under rainfall and reservoir water fluctuation. Chin. J. Rock Mech. Eng. 2005, 24, 2476–2483. [Google Scholar]
- Jia, G.W.; Zhan, T.L.T.; Chen, Y.M.; Fredlund, D.G. Performance of a large-scale slope model subjected to rising and lowering water levels. Eng. Geol. 2009, 106, 92–103. [Google Scholar] [CrossRef]
- Lin, M.L.; Wang, K.L. Seismic slope behavior in a large-scale shaking table model test. Eng. Geol. 2006, 86, 118–133. [Google Scholar] [CrossRef]
- Moriwaki, H.; Inokuchi, T.; Hattanji, T.; Sassa, K.; Ochiai, H.; Wang, G. Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 2004, 1, 277–288. [Google Scholar] [CrossRef]
- Ochiai, H.; Okada, Y.; Furuya, G.; Okura, Y.; Matsui, T.; Sammori, T.; Terajima, T.; Sassa, K. A fluidized landslide on a natural slope by artificial rainfall. Landslides 2004, 1, 211–219. [Google Scholar] [CrossRef]
- Rianna, G.; Pagano, L.; Urciuoli, G. Rainfall patterns triggering shallow flowslides in pyroclastic soils. Eng. Geol. 2014, 174, 22–35. [Google Scholar] [CrossRef]
- Ma, J.W.; Tang, H.M.; Hu, X.L.; Bobet, A.; Yong, R.; Eldin, M.A.M.E. Model testing of the spatial–temporal evolution of a landslide failure. Bull. Eng. Geol. Environ. 2016, 76, 1–17. [Google Scholar] [CrossRef]
- Wu, R.A.; Ma, H.S.; Zhang, J.C.; Yang, Z.H.; Li, X.; Ni, J.W.; Zhong, N. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River. Hydrogel. Eng. Geol. 2021, 48, 120–128. [Google Scholar] [CrossRef]
- Wu, R.A.; Yang, Z.H.; Guo, C.B.; Zhang, Y.S.; Song, D.G.; Ma, H.S.; Li, X.; Ni, J.W. Reactivation and dynamic process prediction of the Woda landslide in the upper Jinsha River Basin, China. Environ. Earth Sci. 2023, 82, 528. [Google Scholar] [CrossRef]
- Ren, D.; Leslie, L.M.; Lynch, M.J.; Duan, Q.Y.; Dai, Y.J.; Wei, S.G. Why was the August 2010 Zhouqu landslide so powerful? Georg. Environ.Sustain. 2013, 6, 67–79. [Google Scholar] [CrossRef]
- Abellan, A.; Vilaplana, J.M.; Martinez, J. Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Nuria (Eastern Pyrenees, Spain). Eng. Geol. 2006, 88, 136–148. [Google Scholar] [CrossRef]
- Fanti, R.; Gigli, G.; Lombardi, L.; Tapete, D.; Canuti, P. Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 2013, 10, 409–420. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellan, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards. 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Wang, G.Q.; Joyce, J.; Phillips, D.; Shrestha, R.; Carter, W. Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 2013, 10, 503–513. [Google Scholar] [CrossRef]
- Krzeminska, D.; Bogaard, T.; Malet, J.P.; van Beek, L.P.H. A model of hydrological and mechanical feedback of preferential fissure flow in a slow-moving landslide. Hydrol. Earth Syst. Sci. 2013, 17, 947–959. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Simoni, B.A. Observation and analysis of near-surface pore-pressure measurements in clayshales slopes. Hydrol. Process. 2012, 26, 2187–2205. [Google Scholar] [CrossRef]
- Wang, R.B.; Wan, J.X.; Cheng, R.L.; Wang, Y.Z.; Wang, Z.Y. Physical and Numerical Simulation of the Mechanism Underpinning Accumulation Layer Deformation, Instability, and Movement Caused by Changing Reservoir Water Levels. Water 2023, 15, 1289. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Z.Y.; Zhou, C.M. Seepage and stability analysis of landslide under the change of reservoir water levels. Chin. J. Rock Mech. Eng. 2016, 35, 713–723. [Google Scholar] [CrossRef]
- Gu, T.F.; Wang, J.D.; Wang, N.Q. Geological features of loess landslide at Lüliang airport and its 3D stability analysis. Rock Soil Mech. 2013, 34, 2009–2016. [Google Scholar] [CrossRef]
- Shen, T.; Wang, Y.S.; Huang, Z.Q.; Li, J.; Zhang, X.; Cao, W.Z.; Gu, J. Formation mechanism and movement processes of the Aizigou paleolandslide, Jinsha River, China. Landslides 2018, 16, 409–424. [Google Scholar] [CrossRef]
- Shao, W.; Bogaard, T.A.; Bakker, M.; Greco, R. Quantification of the influence of preferential flow on slope stability using a numerical modelling approach. Hydrol. Earth Syst. Sci. 2015, 19, 2197–2212. [Google Scholar] [CrossRef]
System Unit | Instruments | Model | Number | Key Technical Parameters |
---|---|---|---|---|
Model box | Model box | — | 1 | Size: 150 cm × 60 cm × 100 cm (length × width × height) |
Rainfall simulation system | Atomizing nozzle | TW3010 | 5 | Diameter: 0.3 mm; rainfall intensity: 0.063–0.251 mm/min. |
Atomizing nozzle | TW5010 | 5 | Diameter: 0.5 mm; rainfall intensity: 0.163–0.433 mm/min. | |
Water tank | — | 1 | Volume: 25 L | |
Compressor | XK06-020 | 1 | Rated voltage: 220 V; pressure: 0.5–3 MPa; volumetric flow rate of 0.032 m3/min; output power: 0.55 kW | |
Internal monitoring system of the model | Soil pressure gauge | CYY2 | 6 | Diameter: 6 mm; output voltage: 0–5 V; range: 0–4 kPa; accuracy: 0.01 kPa; dynamic frequency: 50 kHz |
Pore water pressure gauge | CYY9 | 6 | Diameter: 6 mm; output voltage: 0–5 V; range: 0~2 kPa; accuracy: 0.01 kPa; dynamic frequency: 50 kHz | |
Model surface monitoring system | 3D laser scanner | Faro S70 | 1 | Scanning range: 0–360°; maximum scanning speed: 97 Hz; power consumption: 25 W; ranging error: <1 mm |
Camera | SONY-ILCE-6000 | 3 | Sensor: Exmor APS-HD-CMOS; APS frame: 23.5 × 15.6 mm; maximum resolution: 6000 × 4000; optical zoom: 1–16 times | |
Wire displacement meter | MPS-S | 3 | Range: 50–2000 mm; accuracy: 1 mm; tensile force: <600 g |
Physical Quantity | Similarity Constant Code | Similarity Coefficient |
---|---|---|
Geometric dimensions, l | Cl | 1:550 |
Density, ρ | Cρ | 1:1 |
Moisture content, w | Cw | 1:1 |
Poisson’s ratio, μ | Cμ | 1:1 |
Internal friction angle, φ | Cφ | 1:1 |
Cohesion, c | Cc | 1:1 |
Displacement, δ | Cδ | 1:550 |
Permeability coefficient, k | Ck | 1:5501/2 |
Material Type | Material Size (mm) | Material Proportion | Illustrate | |
---|---|---|---|---|
Sliding Zone | Sliding Body | |||
Gravel | 2~5 | 1/6 | - | |
Sand | 1~0.5 | 2/6 | - | |
Bentonite | <0.002 | 3/6 | 3/26 | Binding material |
Water | - | 1/6 | 3/26 | |
Gravel | 5–10 | - | 1/26 | |
Sand | 0.2–2 | - | 2/26 | |
Barite powder | 0.05–0.2 | - | 8/26 | Weighting material |
Silt soil | 0.05–0.2 | - | 9/26 |
Material Type | Density ρ (g/cm3) | Moisture Content w (%) | Cohesion c (kPa) | Internal Friction Angle φ (°) | Permeability Coefficient k (m/s) | Volumetric Weight γ (kN/m3) | |
---|---|---|---|---|---|---|---|
Sliding body | Prototype | 2.25 | 12 | 71.14 | 21.35 | 4.44 × 10−5 | 22.05 |
Model | 2.24 | 12 | 63.34 | 22.62 | 1.92 × 10−6 | 22.34 | |
Sliding zone | Prototype | 2.20 | 19 | 12.06 | 21.16 | 3.57 × 10−6 | 21.56 |
Model | 2.21 | 19 | 10.14 | 20.06 | 1.51 × 10−7 | 21.93 |
Scenario | Test Conditions | Rainfall Intensity (mm/h) | Crack Location | Crack Geometry Parameter |
---|---|---|---|---|
Scenario 1 | Rainfall | 7.02 | - | - |
Scenario 2 | Coupling effect of rainfall and crack | Model trailing edge | V-shaped, 3 cm in width, 7 cm in height, 60 cm in length |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, R.; Han, B.; Song, D.; Wu, Z.; Zhao, W.; Zou, Q. Evolution Process of Ancient Landslide Reactivation under the Action of Rainfall: Insights from Model Tests. Water 2024, 16, 583. https://doi.org/10.3390/w16040583
Li X, Wu R, Han B, Song D, Wu Z, Zhao W, Zou Q. Evolution Process of Ancient Landslide Reactivation under the Action of Rainfall: Insights from Model Tests. Water. 2024; 16(4):583. https://doi.org/10.3390/w16040583
Chicago/Turabian StyleLi, Xiang, Ruian Wu, Bing Han, Deguang Song, Zhongkang Wu, Wenbo Zhao, and Qijun Zou. 2024. "Evolution Process of Ancient Landslide Reactivation under the Action of Rainfall: Insights from Model Tests" Water 16, no. 4: 583. https://doi.org/10.3390/w16040583