Microplastics in Groundwater: Pathways, Occurrence, and Monitoring Challenges
Abstract
:1. Introduction
2. Pathways of MPs Transport into the GW
2.1. Transport Mechanisms of MPs to GW from Rivers, Lakes, and Seawater
2.2. Transport of MPs through the Soil and the Unsaturated Zone to GW
3. Occurrence of MPs in GW
Sampling Procedure | Analytical Method | Results | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Country | Landfill/Aquifer Type | Well Cleaning before Sampling * | Pump | Filter | Sampled Volume (L) | Sample Treatment | MPs Detection and Quantification | Quality Control | MP Concentration (MP/L) | Main MP Type | Main, MP Shape | Size of Detected MPs (µm) |
Kim et al. [112] | Korea | Fractured rock mass and basal aquifer | 5 min | Peristaltic pumps | Stainless steel—20 μm | 500 | 50 mL of 30% H2O2 24 h—20 μm steel mesh filter—density separation 40 mL solution Li2O13W4−24 and ultra-pure water—metal filter | μ-FT-IR | Field blanks | 0.006–0.192 | PP, PE, PET | Fragments and fibres | 20–50 |
Cha et al. [121] | Korea | Weathered and/or fractured rock aquifers | Yes | Peristaltic pump | Stainless steel—100 and 20 μm | 300–500 | 30% H2O2 solution for 24 h—20 μm stainless-steel filter—40 mL solution of a Li2WO4—20 μm stainless-steel filter—dried at room temp | μ-FT-IR—Imaging microscope | Lab blanks/field blanks | 0.02–3.48 | PP, PE | Fragments | 50–100 |
Panno et al. [25] | USA | Cracked and open karst aquifer | / | / | 0.45 μm | 2 | Dried at 75 °C for 24 h | Dissecting microscope—py-GCMS | Lab blanks | Average 7.00 St. dev. 4.30 | PE | Fibres | <1500 |
Shu et al. [117] | Southwest China | Karts aquifer | Yes | Extruded outlet device | 0.45 μm | 1 | 30% H2O2 at 65 °C and 100 rmp for 12 h—250 mL saturated NaCl 2 min—dried at 50 °C for 24 h | Stereoscopic microscope—RAMAN—FT-IR | Lab blanks | 0.00–4.00 | PS, PP, PET | Fibres | 3–20 |
Balestra et al. [116] | Italy | Cave waters | / | / | Silver—0.8 μm | 1 | Dried for 2 h at 40 °C—2 mL of 15% H2O2 30 min—dried for 2 h at 50 °C | UV flashlight under a microscope—Infrared (IR) spectroscopy | / | 12.00–54.00 | PE, PVA | Fibres | 100–990 |
Selvam et al. [2] | South India | Costal aquifer | / | 12 V Teflon pump | Stainless steel—50 μm | 20 | 30% H2O2 and Fe (II) solution—micro-line filter paper—diluted with deionised water | Stereoscopic microscope—μ-FT-IR—Atomic Force Microscopy | Field blanks | 0.00–4.30 | PA, PE | Fibres | 120–2500 |
Shi et al. [109] | North China | Drinking water source | Yes | / | Polycarbonate—5 μm | 1 | 30 mL of 30% H2O2 24 h at 40 °C | Optical microscope—μ-FT-IR | Lab blanks | 4.00 -72.00 | PA, PE, PP, PVC, PS | Fragments | <50 |
Samandra et al. [108] | Australia | Alluvial unconfined aquifer | Yes | Bailer | Polycarbonate—15 μm | 1 | 40 mL of 30% H2O2 for 12–24 h at 60 °C—density separation with 35 mL of a saturated CaCl2 solution | LDIR | Field blanks, method blanks. Positive control: Lab control | Average 38.00 ± 8.00 | PE, PP, PS, PVC | Fragments | 18–491 |
Esfandiari et al. [110] | Southwest Iran | Alluvial aquifer | 30 min | / | Paper—2 μm | 20 | 250 mL of 30% H2O2 1 day—filter paper 2 μm—dried at room temp | Binocular microscope—RAMAN -SEM | Lab blanks, Positive control: Lab control | 0.10–1.30 | PS, PE, PET | Fibres | < 500 |
Ledieu et al. [113] | France | Landfill—alluvial groundwater | Yes | Supernova 21 pump | Metal—10 µm | 8.8–10.2 | Alumina filter 0.1 μm—100 mL of 30 wt% H2O2 48 to 72 h—ultrasonic bath—densimetric separation with NaI solution—JAMSS unit 24 h | µFTIR | Lab blanks, field blanks | 0.71–106.70 | PE, PP | / | 32–2758 |
Manikanda et al. [114] | South India | Landfill | / | / | / | 1 | / | Dissecting microscope—SEM—ATR-FTIR | / | 2.00–80.00 | Nylon, PP, PS | Pellets, foam, fragments, fibres | / |
Wan et al. [115] | South China | Landfill | / | / | Stainless steel 150, 75, 45 and 25 μm | 4 | 40 ml 0.05 M Fe (II) solution and 40 ml 30% H2O2—0.45 mm filter membrane—density separation | LDIR Chemical Imaging System | Blanks in the entire procedure | 11.00–17.00 | PE, PP, PET | Fibres | 20–150 |
4. Challenges in GW MP Research
4.1. Challenges Associated with Sampling Methods
- Sampling point selection
- b.
- Sampling procedure
4.2. Challenges Associated with Laboratory Analysis
- a.
- Pretreatment of the samples
- b.
- Limitations of methods for MP detection and quantification
4.3. Challenges Associated with Quality Assurance
5. Conclusions
- -
- An accurate interpretation of the origin and pathways of MPs found in a particular sampling area requires a thorough understanding and proper documentation of the hydrogeological and hydrogeographic conditions in the area.
- -
- When collecting borehole samples, it is important to clean the borehole by pre-pumping a certain amount of water before the actual sampling. The appropriate sampling depth to obtain representative samples of the aquifer is also important.
- -
- To ensure representativeness of the sample, a minimum of 500 L of sample water must be collected. This requires a more complex in situ sampling system, which makes the sampling process more challenging and time-consuming.
- -
- During in situ filtration sampling, it is often difficult to avoid the use of plastics. The sampling system used must be carefully specified, and if plastic materials are present, they should be identified and accounted for in the final results.
- -
- Sampling pumps can physically damage or fragment plastic particles, which can lead to an overestimation of the presence of MPs in the sample. To check for plastic particle fragmentation during operation, it is important to test the pump under conditions that reflect its actual power usage.
- -
- Given that the presence of small particles in GW is expected, the filters and size limitations of detection methods may lead to underestimations of the presence of MPs in GW. To obtain accurate results, it is therefore necessary to develop more efficient filtration systems (e.g., cascade filtration) and improve the detection methods.
- -
- In cases where the concentration of organic matter in the GW sample is low, it is recommended to omit the digestion step during sample preparation.
- -
- To ensure accurate monitoring of MPs in GW, it is crucial to prevent contamination during all monitoring stages. This requires the blank sampling and implementation of quality control measures.
Author Contributions
Funding
Conflicts of Interest
References
- Egessa, R.; Nankabirwa, A.; Ocaya, H.; Pabire, W.G. Microplastic pollution in surface water of Lake Victoria. Sci. Total Environ. 2020, 741, 140201. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Roy, P.D.; Jeyanthi Kumari, V. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. J. Hazard. Mater. 2021, 402, 123786. [Google Scholar] [CrossRef]
- Plastics Europe—The Facts 2023. 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 28 February 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Belzagui, F.; Gutiérrez-Bouzán, C.; Álvarez-Sánchez, A.; Vilaseca, M. When Size Matters—Textile Microfibers into the Environment. In Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea, ICMPMS 2019, Capri, Italy, 15–18 September 2019; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Campanale, C.; Losacco, D.; Triozzi, M.; Massarelli, C.; Uricchio, V.F. An Overall Perspective for the Study of Emerging Contaminants in Karst Aquifers. Resources 2022, 11, 105. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, E.; Singh, S.; Pandey, A.; Bhargava, P.C. Micro- and nanoplastics (MNPs) as emerging pollutant in ground water: Environmental impact, potential risks, limitations and way forward towards sustainable management. Chem. Eng. J. 2023, 459, 141568. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Besseling, E.; Shim, W.J. Nanoplastics in the Aquatic Environment. Critical Review. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Shim, W.J.; Hong, S.H.; Eo, S. Marine microplastics: Abundance, distribution, and composition. In Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–26. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; p. 43. [Google Scholar]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Pui, K.C.; Fok, L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China. Water Res. 2017, 122, 53–61. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; de France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene spherules in coastal waters. Science 1972, 178, 749–750. [Google Scholar] [CrossRef]
- Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso Sea surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; Mcgonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? 2004. Available online: http://www.sciencemag.org/cgi/content/full/304/5672/838/ (accessed on 21 November 2023).
- NOAA. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. 2009. Available online: http://www.MarineDebris.noaa.gov (accessed on 8 December 2023).
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Alfaro-Núñez, A.; Astorga, D.; Cáceres-Farías, L.; Bastidas, L.; Soto Villegas, C.; Macay, K.; Christensen, J.H. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Sci. Rep. 2021, 11, 6424. [Google Scholar] [CrossRef]
- Harms, I.K.; Diekötter, T.; Troegel, S.; Lenz, M. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Sci. Total Environ. 2021, 758, 143615. [Google Scholar] [CrossRef] [PubMed]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical Distribution of Microplastics in the Water Column and Surficial Sediment from the Milwaukee River Basin to Lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Scott, J.; Zheng, W.; McNeish, R.E.; Holm, N.; Hoellein, T.J.; Baranski, E.L. Microplastic Contamination in Karst Groundwater Systems. Groundwater 2019, 57, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Scherer, C.; Weber, A.; Stock, F.; Vurusic, S.; Egerci, H.; Kochleus, C.; Arendt, N.; Foeldi, C.; Dierkes, G.; Wagner, M.; et al. Comparative assessment of microplastics in water and sediment of a large European river. Sci. Total Environ. 2020, 738, 139866. [Google Scholar] [CrossRef]
- Weber, C.J.; Opp, C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environ. Pollut. 2020, 267, 115390. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Singh, S.; Bhagwat, A. Microplastics: A potential threat to groundwater resources. Groundw. Sustain. Dev. 2022, 19, 100852. [Google Scholar] [CrossRef]
- Vivekanand, A.C.; Mohapatra, S.; Tyagi, V.K. Microplastics in aquatic environment: Challenges and perspectives. Chemosphere 2021, 282, 131151. [Google Scholar] [CrossRef] [PubMed]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P. Recent Developments in Extraction, Identification, and Quantification of Microplastics from Agricultural Soil and Groundwater. In Fate and Transport of Subsurface Pollutants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 125–143. [Google Scholar] [CrossRef]
- Re, V. Shedding light on the invisible: Addressing the potential for groundwater contamination by plastic microfibers. Hydrogeol. J. 2019, 27, 2719–2727. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.Y. Emerging concerns about microplastic pollution on groundwater in South Korea. Sustainability 2020, 12, 5275. [Google Scholar] [CrossRef]
- Chia, R.W.; Lee, J.Y.; Kim, H.; Jang, J. Microplastic pollution in soil and groundwater: A review. Environ. Chem. Lett. 2021, 19, 4211–4224. [Google Scholar] [CrossRef]
- Kuri, G.H. Agua subterránea y soberanía interdependiente: El caso de los Sistemas Acuíferos Transfronterizos en la región binacional de Paso del Norte. Norteamérica 2017, 12, 113–145. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Boving, T.B.; Kreamer, D.K.; Kebede, S.; Smedley, P.L. Groundwater quality: Global threats, opportunities and realising the potential of groundwater. Sci. Total Environ. 2022, 811, 152471. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Song, Y.; Zhang, X.; Xie, B.; He, D. Microplastics in Urban Environments: Sources, Pathways, and Distribution. In Handbook of Environmental Chemistry; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2020; Volume 95, pp. 41–61. [Google Scholar] [CrossRef]
- Viaroli, S.; Lancia, M.; Re, V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review. Sci. Total Environ. 2022, 824, 153851. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Boopathy, R.; Hadibarata, T. Challenges and Solutions for Sustainable Groundwater Usage: Pollution Control and Integrated Management. Curr. Pollut. Rep. 2020, 6, 310–327. [Google Scholar] [CrossRef]
- Deng, L.; Krauss, S.; Feichtmayer, J.; Hofmann, R.; Arndt, H.; Griebler, C. Grazing of heterotrophic flagellates on viruses is driven by feeding behaviour. Environ. Microbiol. Rep. 2014, 6, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D.L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 2018, 236, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.C.; Park, B.J.; Palace, V.P. Microplastics in aquatic environments: Implications for Canadian ecosystems. Environ. Pollut. 2016, 218, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Frei, S.; Piehl, S.; Gilfedder, B.S.; Löder, M.G.J.; Krutzke, J.; Wilhelm, L.; Laforsch, C. Occurence of microplastics in the hyporheic zone of rivers. Sci. Rep. 2019, 9, 15256. [Google Scholar] [CrossRef] [PubMed]
- Kooi, M.; Besseling, E.; Kroeze, C.; van Wezel, A.P.; Koelmans, A.A. Modeling the fate and transport of plastic debris in freshwaters: Review and Guidance. In Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2018; Volume 58, pp. 125–152. [Google Scholar] [CrossRef]
- Harrison, J.P.; Hoellein, T.J.; Sapp, M.; Tagg, A.S.; Ju-Nam, Y.; Ojeda, J.J. Microplastic-associated biofilms: A comparison of freshwater and marine environments. In Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2018; Volume 58, pp. 181–201. [Google Scholar] [CrossRef]
- Kowalski, N.; Reichardt, A.M.; Waniek, J.J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 2016, 109, 310–319. [Google Scholar] [CrossRef]
- Long, M.; Moriceau, B.; Gallinari, M.; Lambert, C.; Huvet, A.; Raffray, J.; Soudant, P. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Chem. 2015, 175, 39–46. [Google Scholar] [CrossRef]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Silva, C.J.M.; Machado, A.L.; Campos, D.; Rodrigues, A.C.M.; Patrício Silva, A.L.; Soares, A.M.V.M.; Pestana, J.L.T. Microplastics in freshwater sediments: Effects on benthic invertebrate communities and ecosystem functioning assessed in artificial streams. Sci. Total Environ. 2022, 804, 150118. [Google Scholar] [CrossRef] [PubMed]
- Severini, E.; Ducci, L.; Sutti, A.; Robottom, S.; Sutti, S.; Celico, F. River–Groundwater Interaction and Recharge Effects on Microplastics Contamination of Groundwater in Confined Alluvial Aquifers. Water 2022, 14, 1913. [Google Scholar] [CrossRef]
- Drummond, J.D.; Nel, H.A.; Packman, A.I.; Krause, S. Significance of Hyporheic Exchange for Predicting Microplastic Fate in Rivers. Environ. Sci. Technol. Lett. 2020, 7, 727–732. [Google Scholar] [CrossRef]
- Hoehn, E. Exchange processes between rivers and ground waters—The hydrological and geochemical approach. In Groundwater Ecology; al Griebler, C., Ed.; European Commission Environment and Climate Programme: Brussels, Belgium, 2001; pp. 55–68. [Google Scholar]
- Woessner, W.W. Hyporheic Zones. In Methods in Stream Ecology, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 1, pp. 129–157. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.D.; Schneidewind, U.; Li, A.; Hoellein, T.J.; Krause, S.; Packman, A.I. Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstems. Sci. Adv. 2022, 8, eabi9305. [Google Scholar] [CrossRef] [PubMed]
- Breil, P.; Grimm, N.B.; Vervier, P. Surface Water-Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of Temporal and Spatial Scale Dependency. In Hydroecology and Ecohydrology: Past, Present and Future; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 93–111. [Google Scholar] [CrossRef]
- Xu, S.; Frey, S.K.; Erler, A.R.; Khader, O.; Berg, S.J.; Hwang, H.T.; Callaghan, M.V.; Davison, J.H.; Sudicky, E.A. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model. J. Hydrol. 2021, 594, 125911. [Google Scholar] [CrossRef]
- Ren, X.W.; Santamarina, J.C. The hydraulic conductivity of sediments: A pore size perspective. Eng. Geol. 2018, 233, 48–54. [Google Scholar] [CrossRef]
- Woessner, W.W. Groundwater-Surface Water Exchange; Groundwater Project: Guelph, ON, Canada, 2020; p. 158. ISBN 978-1-7770541-5-1. [Google Scholar]
- Cieśliński, R.; Piekarz, J.; Zieliński, M. Groundwater supply of lakes: The case of Lake Raduńskie Górne (northern Poland, Kashubian Lake District). Hydrol. Sci. J. 2016, 61, 2427–2434. [Google Scholar] [CrossRef]
- Engesgaard, P.; Solvang, I.S.; Steiness, M.; Kristensen, E.; Kragh, T.; Duque, C. Tracing the spatial distribution of whole-lake exchange of groundwater and lakewater in lowhydraulic gradient systems using δ18O and electrical conductivity and uncertain end-member mixing analysis. Water 2020, 12, 1608. [Google Scholar] [CrossRef]
- Javadzadeh, H.; Ataie-Ashtiani, B.; Hosseini, S.M.; Simmons, C.T. Interaction of lake-groundwater levels using cross-correlation analysis: A case study of Lake Urmia Basin, Iran. Sci. Total Environ. 2020, 729, 138822. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Morrissey, P.; Gill, L.W. Application of Nonlinear Time Series and Machine. Learning Algorithms for Forecasting Groundwater Flooding in a Lowland Karst Area. Water Resour. Res. 2022, 58, e2021WR029576. [Google Scholar] [CrossRef]
- Drew, D.P. Hydrogeology of lowland karst in Ireland. Q. J. Eng. Geol. Hydrogeol. 2008, 41, 61–72. [Google Scholar] [CrossRef]
- Pradhan, B.; Chand, S.; Chand, S.; Rout, P.R.; Naik, S.K. Emerging groundwater contaminants: A comprehensive review on their health hazards and remediation technologies. Groundw. Sustain. Dev. 2023, 20, 100868. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Jia, C.; Chen, Q.; Hao, D.; Lou, S.; An, M.; Li, Q.; Dong, F.; Yu, Y.; Cheng, W. Ground water copper levels in the seawater intrusion area and the possible physical and chemical dynamics. Environ. Sci. Process. Impacts 2021, 23, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Wang, C.; Dang, X. The Distribution Characteristics and Human Health Risks of High-Fluorine Groundwater in Coastal Plain: A Case Study in Southern Laizhou Bay, China. Front. Environ. Sci. 2022, 10, 901637. [Google Scholar] [CrossRef]
- Li, M.; Zhang, M.; Rong, H.; Zhang, X.; He, L.; Han, P.; Tong, M. Transport and deposition of plastic particles in porous media during seawater intrusion and groundwater-seawater displacement processes. Sci. Total Environ. 2021, 781, 146752. [Google Scholar] [CrossRef]
- Johnson, W.P.; Ma, H.; Rasmuson, A.; VanNess, K.; Li, K.; Ron, C.; Erickson, B. Colloid Transport in Environmental Granular Porous Media. In Encyclopedia of Water; Wiley: Hoboken, NJ, USA, 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic 18 benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.A.; Corcoran, P.L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 2010, 60, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Res. 2020, 173, 115564. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Duan, J.; Bolan, N.; Li, Y.; Ding, S.; Atugoda, T.; Vithanage, M.; Sarkar, B.; Tsang, D.C.W.; Kirkham, M.B. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Res. 2021, 196, 117011. [Google Scholar] [CrossRef]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, X.; Zhang, Z.; Wang, Y.; Wang, J.; Wang, J.; Ma, D. Persistent organic pollutants carried on plastic resin pellets from two beaches in China. Mar. Pollut. Bull. 2015, 99, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Maaß, S.; Daphi, D.; Lehmann, A.; Rillig, M.C. Transport of microplastics by two collembolan species. Environ. Pollut. 2017, 225, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, X.; Hu, J.; Peng, J.; Qu, J. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environ. Pollut. 2020, 265, 114830. [Google Scholar] [CrossRef] [PubMed]
- Lwanga, E.H.; Beriot, N.; Corradini, F.; Silva, V.; Yang, X.; Baartman, J.; Rezaei, M.; van Schaik, L.; Riksen, M.; Geissen, V. Review of microplastic sources, transport pathways and correlations with other soil stressors: A journey from agricultural sites into the environment. Chem. Biol. Technol. Agric. 2022, 9, 20. [Google Scholar] [CrossRef]
- Li, H.; Lu, X.; Wang, S.; Zheng, B.; Xu, Y. Vertical migration of microplastics along soil profile under different crop root systems. Environ. Pollut. 2021, 278, 116833. [Google Scholar] [CrossRef] [PubMed]
- Okutan, H.M.; Sağir, Ç.; Fontaine, C.; Nauleau, B.; Kurtulus, B.; le Coustumer, P.; Razack, M. One-Dimensional Experimental Investigation of Polyethylene Microplastic Transport in a Homogeneous Saturated Medium. Front. Environ. Sci. 2022, 10, 885875. [Google Scholar] [CrossRef]
- Qi, S.; Song, J.; Shentu, J.; Chen, Q.; Lin, K. Attachment and detachment of large microplastics in saturated porous media and its influencing factors. Chemosphere 2022, 305, 135322. [Google Scholar] [CrossRef]
- Waldschläger, K.; Schüttrumpf, H. Infiltration Behavior of Microplastic Particles with Different Densities, Sizes, and Shapes-From Glass Spheres to Natural Sediments. Environ. Sci. Technol. 2020, 54, 9366–9373. [Google Scholar] [CrossRef]
- Ranjan, V.P.; Joseph, A.; Sharma, H.B.; Goel, S. Preliminary investigation on effects of size, polymer type, and surface behaviour on the vertical mobility of microplastics in a porous media. Sci. Total Environ. 2023, 864, 161148. [Google Scholar] [CrossRef]
- Gao, J.; Pan, S.; Li, P.; Wang, L.; Hou, R.; Wu, W.M.; Luo, J.; Hou, D. Vertical migration of microplastics in porous media: Multiple controlling factors under wet-dry cycling. J. Hazard. Mater. 2021, 419, 126413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Y.; Li, X.; Zhang, Y.; Gao, W.; Jiang, J.; Mo, A.; He, D. Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall. Sci. Total Environ. 2022, 815, 152507. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Pan, S.; Shen, Z.; Song, Y.; Jin, Y.; Wu, W.M.; Hou, D. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ. Pollut. 2019, 249, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Qiu, Y.; Zhang, W.; Yang, Z.; Wei, L. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. Water Res. 2018, 143, 518–526. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner, J.M.; Tufenkji, N. Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. Water Res. 2021, 189, 116533. [Google Scholar] [CrossRef]
- Dong, S.; Xia, J.; Sheng, L.; Wang, W.; Liu, H.; Gao, B. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions. Chemosphere 2021, 276, 130214. [Google Scholar] [CrossRef]
- Denovio, N.M.; Saiers, J.E.; Ryan, J.N. Colloid Movement in Unsaturated Porous Media: Recent Advances and Future Directions. 2004. Available online: http://www.vadosezonejournal.org (accessed on 29 February 2024).
- Schmid, C.; Cozzarini, L.; Zambello, E. Microplastic’s story. Mar. Pollut. Bull. 2021, 162, 111820. [Google Scholar] [CrossRef] [PubMed]
- Blettler, M.C.M.; Abrial, E.; Khan, F.R.; Sivri, N.; Espinola, L.A. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Res. 2018, 143, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, H.; Zheng, Y.; Yang, Y.; Zhang, Y.; Gao, B. Microplastic pollution in soils and groundwater: Characteristics, analytical methods and impacts. Chem. Eng. J. 2021, 425, 131870. [Google Scholar] [CrossRef]
- Samandra, S.; Johnston, J.M.; Jaeger, J.E.; Symons, B.; Xie, S.; Currell, M.; Ellis, A.V.; Clarke, B.O. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci. Total Environ. 2022, 802, 149727. [Google Scholar] [CrossRef]
- Shi, J.; Dong, Y.; Shi, Y.; Yin, T.; He, W.; An, T.; Tang, Y.; Hou, X.; Chong, S.; Chen, D.; et al. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation. Environ. Res. 2022, 210, 112855. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, A.; Abbasi, S.; Peely, A.B.; Mowla, D.; Ghanbarian, M.A.; Oleszczuk, P.; Turner, A. Distribution and transport of microplastics in groundwater (Shiraz aquifer, southwest Iran). Water Res. 2022, 220, 118622. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond the ocean: Contamination of freshwater ecosystems with (micro-)plastic particles. Environ. Chem. 2015, 12, 539–550. [Google Scholar] [CrossRef]
- Kim, Y.-I.; Jeong, E.; Lee, J.-Y.; Chia, R.W.; Raza, M. Microplastic contamination in groundwater on a volcanic Jeju Island of Korea. Environ. Res. 2023, 226, 115682. [Google Scholar] [CrossRef] [PubMed]
- Ledieu, L.; Phuong, N.-N.; Flahaut, B.; Radigois, P.; Papin, J.; le Guern, C.; Béchet, B.; Gasperi, J. May a Former Municipal Landfill Contaminate Groundwater in Microplastics? First Investigations from the “Prairie de Mauves Site” (Nantes, France). Microplastics 2023, 2, 93–106. [Google Scholar] [CrossRef]
- Manikanda, K.B.; Natesan, U.; Vaikunth, R.; Praveen, K.; Ruthra, R.; Srinivasalu, S. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere 2021, 277, 130263. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Chen, X.; Liu, Q.; Hu, H.; Wu, C.; Xue, Q. Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environ. Pollut. 2022, 293, 118586. [Google Scholar] [CrossRef] [PubMed]
- Balestra, V.; Vigna, B.; de Costanzo, S.; Bellopede, R. Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. J. Contam. Hydrol. 2023, 252, 104117. [Google Scholar] [CrossRef]
- Shu, X.; Xu, L.; Yang, M.; Qin, Z.; Zhang, Q.; Zhang, L. Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: The case of Yulong River in Guilin, Southwest China. Sci. Total Environ. 2023, 868, 161578. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, F.; Song, Z.; Zong, C.; Wei, N.; Li, D. A novel method enabling the accurate quantification of microplastics in the water column of deep ocean. Mar. Pollut. Bull. 2019, 146, 462–465. [Google Scholar] [CrossRef]
- Cha, J.; Lee, J.Y.; Chia, R.W. Comment on the paper “Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia”. Sci. Total Environ. 2022, 820, 153121. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.W.; Lee, J.Y.; Jang, J.; Cha, J. Errors and recommended practices that should be identified to reduce suspected concentrations of microplastics in soil and groundwater: A review. Environ. Technol. Innov. 2022, 28, 102933. [Google Scholar] [CrossRef]
- Cha, J.; Lee, J.Y.; Chia, R.W. Microplastics contamination and characteristics of agricultural groundwater in Haean Basin of Korea. Sci. Total Environ. 2023, 864, 161027. [Google Scholar] [CrossRef]
- Nunes, B.Z.; Huang, Y.; Ribeiro, V.V.; Wu, S.; Holbech, H.; Moreira, L.B.; Xu, E.G.; Castro, I.B. Microplastic contamination in seawater across global marine protected areas boundaries. Environ. Pollut. 2023, 316, 120692. [Google Scholar] [CrossRef] [PubMed]
- Matjašič, T.; Mori, N.; Hostnik, I.; Bajt, O.; Kovač Viršek, M. Microplastic pollution in small rivers along rural–urban gradients: Variations across catchments and between water column and sediments. Sci. Total Environ. 2023, 858, 160043. [Google Scholar] [CrossRef] [PubMed]
- Dusaucy, J.; Gateuille, D.; Perrette, Y.; Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 2021, 284, 117075. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.E.; Ligthart, T.N.; Boukris, E.; van Harmelen, T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Mar. Pollut. Bull. 2019, 143, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Fok, L.; Cheung, P.K.; Tang, G.; Li, W.C. Size distribution of stranded small plastic debris on the coast of Guangdong, South China. Environ. Pollut. 2017, 220, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Helm, P.A. Occurrence, sources, transport, and fate of microplastics in the great lakes–St. lawrence river basin. In Handbook of Environmental Chemistry; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2020; Volume 101, pp. 15–47. [Google Scholar] [CrossRef]
- Falco, F.; di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef]
- Bakaraki Turan, N.; Sari Erkan, H.; Onkal Engin, G. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2021, 146, 77–84. [Google Scholar] [CrossRef]
- Lee, J.Y.; Cha, J.; Ha, K.; Viaroli, S. Microplastic pollution in groundwater: A systematic review. Environ. Pollut. Bioavailab. 2024, 36, 2299545. [Google Scholar] [CrossRef]
- Wilde, F.D.; Radtke, D.B.; Gibs, J.; Iwatsubo, R.T. National Field Manual for the Collection of Water-Quality Data, Book 4. Techniques of Water-Resources Investigations. Chapter A4. Collection of Water Samples; U.S. Geological Survey: Reston, VA, USA, 1998.
- Galgani, F.; Ruiz-Orejon, L.F.; Ronchi, F.; Tallec, K.; Fischer, E.; Matiddi, M.; Anastasopoulou, A.; Andresmaa, E.; Angiolillo, M.; Bakker, M.P.; et al. Guidance on the Monitoring of Marine Litter in European Seas: An Update to Improve the Harmonised Monitoring of Marine Litter under the Marine Strategy Framework Directive; JRC Technical Report No. 133594; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Girão, A.V.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. Sci. Total Environ. 2019, 686, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Masura, J.; Baker, J.E.; Foster, G.D.; Arthur, C.; Herring, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments. 2015. Available online: https://repository.library.noaa.gov/view/noaa/10296 (accessed on 17 April 2024).
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Löder, M.G.J.; Gerdts, G. Methodology Used for the Detection and Identification of Microplastics—A Critical Appraisal. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Lenz, R.; Enders, K.; Stedmon, C.A.; MacKenzie, D.M.A.; Nielsen, T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 2015, 100, 82–91. [Google Scholar] [CrossRef]
- Prata, J.C.; Reis, V.; da Costa, J.P.; Mouneyrac, C.; Duarte, A.C.; Rocha-Santos, T. Contamination issues as a challenge in quality control and quality assurance in microplastics analytics. J. Hazard. Mater. 2021, 403, 123660. [Google Scholar] [CrossRef]
Reference | Factor | Column Characteristics (cm) | Polymer | Shape | Media Material | Max Infiltration Depth (cm) | dMPs/dMedia | Rainfall Intensity |
---|---|---|---|---|---|---|---|---|
Waldschläger and Schüttrumpf. [96] | / | 19.40 × 30.00 | CoPA; PA; PE; PET; PP; PS; PVC; SBR | Fibre; fragment; pellet; pellet cubic; sphere | Glass sphere | 0.00–30.00 | 0.05–3.33 | 4600 mL/min |
Ranjan et al. [97] | Wet-dry cycles | 9.00 × 33.00 | PE; PET; PP | Fragment | Sand | 6.00–>30.00 | <0.02–1.40 | 2.5–7–7.5 mm/h |
Gao et al. [98] | Wet-dry cycles and presence of DOM | 4.00 × 25.00 | PA; PE; PET; PP | Pellet | Sand | 0.00–13.50 | 0.017–2.14 | / |
Zhang et al. [99] | Artificial rainfall | 39.00 × 9.00 × 29.00 | PET; PE | Particle; fibre: film | 0.03% MO; 0.77% clay; 17.27% silt; 81.73% sand | 7.00 | / | 15.00 mm/day |
39.00 × 9.00 × 29.00 | PET; PE | Particle; fibre: film | 0.03% MO; 0.77% clay; 17.27% silt; 81.73% sand | 6.00 | / | 25.00 mm/day | ||
Natural rainfall | 39.00 × 9.00 × 29.00 | PET; PE | Particle; fibre: film | 0.03% MO; 0.77% clay; 17.27% silt; 81.73% sand | 5.00 | / | 3.10 mm/day | |
O’Connor et al. [100] | / | 25.00 × 4.00 | PE | Spheres | Sand | 7.500 | 0.05 | 83 mm/day |
/ | 25.00 × 4.00 | PE; PP | Spheres | Sand | 3.500 | 0.07–1.39 | 83 mm/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colmenarejo Calero, E.; Kovač Viršek, M.; Mali, N. Microplastics in Groundwater: Pathways, Occurrence, and Monitoring Challenges. Water 2024, 16, 1228. https://doi.org/10.3390/w16091228
Colmenarejo Calero E, Kovač Viršek M, Mali N. Microplastics in Groundwater: Pathways, Occurrence, and Monitoring Challenges. Water. 2024; 16(9):1228. https://doi.org/10.3390/w16091228
Chicago/Turabian StyleColmenarejo Calero, Elvira, Manca Kovač Viršek, and Nina Mali. 2024. "Microplastics in Groundwater: Pathways, Occurrence, and Monitoring Challenges" Water 16, no. 9: 1228. https://doi.org/10.3390/w16091228