Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea
Abstract
:1. Ecological Management of Receiving Waters in Event-driven Ecosystems
2. South East Queensland, Australia
3. Receiving-Water Management Approaches: Rivers, Reservoirs and Coastal Waters
3.1. Water Quality and the Ecology of Rivers
3.2. Water Quality and the Ecology of Reservoirs
Group | Indicator |
---|---|
Best management practice adoption | % grazing properties with property management plans |
% grazing properties with >90% median long-term groundcover | |
% woody vegetation with protection status | |
% agricultural properties on <30% slope | |
% sewered urban properties | |
Catchment land-use and sediment mobility | % catchment within lowest 90th percentile for likelihood of containing pollutants |
% catchment vegetated | |
% catchment within lowest 90th percentile for Universal Soil Loss Equation erosion hazard | |
Riparian condition | % riparian area with vegetated cover |
% of stream length within vegetated cover | |
Reservoir condition | Good catchment condition with any land use appropriately managed |
Minimal cyanobacterial blooms | |
Minimal incidence of bacteria and pathogens | |
Low suspended sediment and nutrient levels | |
Suitability for primary human contact | |
Healthy ecological condition |
3.3. Water Quality and the Ecology of Coastal Waters
3.3.1. Nutrient Loads and Phytoplankton Responses
3.3.2. Seagrass, Turtles and Dugongs
4. Restoration Approaches: Addressing Ecosystem Health Decline from Land to River to Sea
5. Future Directions and Challenges
Receiving water | Receiving-water management issue | Mitigation strategies | Examples of science underpinning the approaches |
---|---|---|---|
Rivers | Poor water quality | Reducing loads of nutrients and sediment from catchments; Revegetating riparian zones and catchments | [19,68] |
Macroinvertebrate and native fish diversity decline | Revegetating riparian zones and catchments | [19] | |
Reservoirs | Blooms of toxic cyanobacteria | Reducing loads of nitrogen and phosphorus from catchments | [25,26,69] |
Taste and odour compounds | Reducing loads of nitrogen and phosphorus from catchments | [70] | |
Poor water quality | Best land management practices; Reducing loads of nutrients and sediment from catchments | [21,23,31] | |
Rivers | Poor water quality | Reducing loads of nutrients and sediment from catchments; Revegetating riparian zones and catchments | [19,68] |
Macroinvertebrate and native fish diversity decline | Revegetating riparian zones and catchments | [19] | |
Reservoirs | Blooms of toxic cyanobacteria | Reducing loads of nitrogen and phosphorus from catchments | [25,26,69] |
Taste and odour compounds | Reducing loads of nitrogen and phosphorus from catchments | [70] | |
Poor water quality | Best land management practices; Reducing loads of nutrients and sediment from catchments | [21,23,31] |
6. Conclusions
Acknowledgments
Conflict of Interest
References
- Watson, I.; Burnside, D.; Holm, A. Event-driven or continuous; which is the better model for managers? Rangel. J. 1996, 18, 351–369. [Google Scholar] [CrossRef]
- Puckridge, J.T.; Sheldon, F.; Walker, K.F.; Boulton, A.J. Flow variability and the ecology of large rivers. Mar. Freshw. Res. 1998, 49, 55–72. [Google Scholar] [CrossRef]
- Finlayson, B.L.; McMahon, T.A. Australia v. the World: A Comparative Analysis of Streamflow Characteristics. In Fluvial Geomorphology of Australia; Warner, R.F., Ed.; Academic Press: Sydney, Australia, 1988; pp. 17–40. [Google Scholar]
- Clark, M.J. Dealing with uncertainty: Adaptive approaches to sustainable river management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2002, 12, 347–363. [Google Scholar] [CrossRef]
- Abal, E.G.; Bunn, S.E.; Dennison, W.C. Healthy Waterways, Healthy Catchments: Making the Connection in South East Queensland, Australia; Moreton Bay and Catchments Partnership: Brisbane, Australia, 2005; p. 222. [Google Scholar]
- Bunn, S.E.; Abal, E.G.; Greenfield, P.F.; Tarte, D.M. Making the connection between healthy waterways and healthy catchments: South East Queensland, Australia. Water Sci. Technol. Water Supply 2007, 7, 93–100. [Google Scholar]
- Saxton, N.E.; Olley, J.M.; Smith, S.; Ward, D.P.; Rose, C.W. Gully erosion in sub-tropical south-east Queensland, Australia. Geomorphology 2012, 173–174, 80–87. [Google Scholar] [CrossRef]
- Kennard, M.J.; Pusey, B.J.; Olden, J.D.; Mackay, S.J.; Stein, J.L.; Marsh, N. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 2010, 55, 171–193. [Google Scholar]
- National Vegetation Information System (NVIS). Available online: http://www.environment.gov.au/erin/nvis/mvg/index.html#mvg (accessed on 1 December 2011).
- Bolton, G.C. They Hated Trees. In Spoils and Spoilers: A History of Australians Shaping Their Environment; Curthoy, A., Ed.; Allen and Unwin: Sydney, Australia, 1992; pp. 37–48. [Google Scholar]
- Dennison, W.; Abal, E. Moreton Bay Study: A Scientific Basis for the Healthy Waterways Campaign; South East Queensland Regional Water Quality Management Strategy: Brisbane, Australia, 1999; p. 246. [Google Scholar]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Weijters, M.J.; Janse, J.H.; Alkemade, R.; Verhoeven, J.T.A. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 104–112. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H. The ecology of interfaces: Riparian zones. Ann. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Newham, M.; Fellows, C.; Sheldon, F. Functions of riparian forest in urban catchments: A case study from sub-tropical Brisbane, Australia. Urban Ecosyst. 2010, 14, 165–180. [Google Scholar] [CrossRef]
- Olley, J.; Burton, J.; Hermoso, V.; Smolders, K.; McMahon, J.; Thomson, B.; Watkinson, A. Remnant vegetation, sediment and nutrient loads, and river rehabilitation in subtropical Australia. Hydrol. Process. 2013. Submitted for publication.. [Google Scholar]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Bunn, S.E.; Abal, E.G.; Smith, M.J.; Choy, S.C.; Fellows, C.S.; Harch, B.D.; Kennard, M.J.; Sheldon, F. Integration of science and monitoring of river ecosystem health to guide investments in catchment protection and rehabilitation. Freshw. Biol. 2010, 55, 223–240. [Google Scholar] [CrossRef]
- Sheldon, F.; Peterson, E.E.; Boone, E.L.; Sippel, S.; Bunn, S.E.; Harch, B.D. Identifying the spatial scale of land use that most strongly influences overall river ecosystem health score. Ecol. Appl. 2012, 22, 2188–2203. [Google Scholar] [CrossRef]
- National Health and Medical Research Council (NHMRC)National Resource Management Ministerial Council (NRMMC)Australian Drinking Water Guidelines Paper 6: National Water Quality Management Strategy; Commonwealth of Australia: Canberra, Australia, 2011.
- Burford, M.; Green, S.; Cook, A.; Johnson, S.; Kerr, J.; O’Brien, K. Sources and fate of nutrients in a subtropical reservoir. Aquat. Sci. 2012, 74, 179–190. [Google Scholar] [CrossRef]
- Burford, M.A.; Johnson, S.A.; Cook, A.J.; Packer, T.V.; Taylor, B.M.; Townsley, E.R. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Res. 2007, 41, 4105–4114. [Google Scholar] [CrossRef]
- Leigh, C.; Burford, M.A.; Roberts, D.T.; Udy, J.W. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Res. 2010, 44, 4487–4496. [Google Scholar] [CrossRef]
- Antenucci, J.P.; Ghadouani, A.; Burford, M.A.; Romero, J.R. The long-term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir. Freshw. Biol. 2005, 50, 1081–1093. [Google Scholar] [CrossRef]
- Muhid, P.; Burford, M.A. Assessing nutrient limitation in a subtropical reservoir. Inland Water. 2012, 2, 185–192. [Google Scholar]
- Muhid, P.; Davis, T.W.; Bunn, S.E.; Burford, M.A. Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition. Water Res. 2013, 47, 384–394. [Google Scholar] [CrossRef]
- Posselt, A.J.; Burford, M.A.; Shaw, G. Pulses of phosphate promote dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. J. Phycol. 2009, 45, 540–546. [Google Scholar] [CrossRef]
- Kerr, J.G.; Burford, M.; Olley, J.; Udy, J. The effects of drying on phosphorus sorption and speciation in subtropical river sediments. Mar. Freshw. Res. 2010, 61, 928–935. [Google Scholar] [CrossRef]
- Kerr, J.G.; Burford, M.A.; Olley, J.M.; Bunn, S.E.; Udy, J. Examining the link between terrestrial and aquatic phosphorus speciation in a subtropical catchment: The role of selective erosion and transport of fine sediments during storm events. Water Res. 2011, 45, 3331–3340. [Google Scholar] [CrossRef]
- Kerr, J.G.; Burford, M.; Olley, J.; Udy, J. Phosphorus sorption in soils and sediments: Implications for phosphate supply to a subtropical river in southeast Queensland, Australia. Biogeochemistry 2011, 102, 73–85. [Google Scholar] [CrossRef]
- Watkinson, A.; Volders, A.; Smolders, K.; Simms, A.; Olley, J.; Burford, M.; Stratton, H.; Gibbes, B.; Grinham, A. Source water protection for Seqwater: Novel techniques to assess the effectiveness of management intervention and prioritise action. Water 2012, 39, 100–105. [Google Scholar]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Diaz, R.J.; Levin, L.A.; Turner, R.E.; Gilbert, D.; Zhang, J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef]
- McEwan, J.; Gabric, A.J.; Bell, P.R.F. Water quality and phytoplankton dynamics in Moreton Bay, south-eastern Queensland. II. Mathematical modelling. Mar. Freshw. Res. 1998, 49, 227–239. [Google Scholar] [CrossRef]
- Wulff, F.; Eyre, B.D.; Johnstone, R. Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): Implications for management. Ecol. Model. 2011, 222, 120–130. [Google Scholar] [CrossRef]
- Glibert, P.; Heil, C.; O’Neil, J.; Dennison, W.; O’Donohue, M.H. Nitrogen, phosphorus, silica, and carbon in Moreton Bay, Queensland, Australia: Differential limitation of phytoplankton biomass and production. Estuar. Coast. 2006, 29, 209–221. [Google Scholar] [CrossRef]
- O’Donohue, M.H.; Dennison, W. Phytoplankton productivity response to nutrient concentrations, light availability and temperature along an Australian estuarine gradient. Estuaries 1997, 20, 521–533. [Google Scholar] [CrossRef]
- Costanzo, S.D.; Udy, J.; Longstaff, B.; Jones, A. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: Changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Mar. Pollut. Bull. 2005, 51, 212–217. [Google Scholar] [CrossRef]
- Rissik, D.; Darnell, R. Estuaries and Moreton Bay, EHMP Trends in Ecosystem Health 2000–2009; Healthy Waterways: Brisbane, Australia, 2013; in press. [Google Scholar]
- Saeck, E.A.; O’Brien, K.R.; Weber, T.R.; Burford, M.A. Changes to chronic nitrogen loading from sewage discharges modify standing stocks of coastal phytoplankton. Mar. Pollut. Bull. 2013, in press. [Google Scholar]
- Weber, T.; Stewart, J. Benefits and Limitations of Current Approaches to Whole of Catchment Modelling. In Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia, 13–17 July 2009; Anderssen, R.S., Braddock, R.D., Newham, L.T.H., Eds.; Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation: Canberra, Australia, 2009; pp. 4071–4077. [Google Scholar]
- Saeck, E.; Hadwen, W.; Rissik, D.; O’Brien, K.; Burford, M. Flow events drive patterns of phytoplankton distribution along a river-estuary-bay continuum. Mar. Freshw. Res. 2013, in press. [Google Scholar]
- Tibbetts, I.R.; Connolly, R.M. The Nekton of Moreton Bay. In Moreton Bay and Catchment; Tibbetts, I.R., Hall, N.J., Dennison, W.C., Eds.; School of Marine Science, University of Queensland: Brisbane, Australia, 1998; pp. 395–420. [Google Scholar]
- Lanyon, J.M. Distribution and abundance of dugongs in Moreton Bay, Queensland, Australia. Wildl. Res. 2003, 30, 397–409. [Google Scholar] [CrossRef]
- Arthur, K.E.; Boyle, M.C.; Limpus, C.J. Ontogenetic changes in diet and habitat use in green sea turtle (Chelonia mydas) life history. Mar. Ecol. Prog. Ser. 2008, 362, 303–311. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marbà, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Phinn, S.R.; Udy, N.; Maxwell, P. An integrated field and remote sensing approach for mapping Seagrass Cover, Moreton Bay, Australia. J. Spat. Sci. 2009, 54, 45–62. [Google Scholar] [CrossRef]
- Udy, J.W.; Dennison, W.C. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. J. Exp. Mar. Biol. Ecol. 1997, 217, 253–277. [Google Scholar] [CrossRef]
- Abal, E.G.; Loneragan, N.; Bowen, P.; Perry, C.J.; Udy, J.W.; Dennison, W.C. Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity. J. Exp. Mar. Biol. Ecol. 1994, 178, 113–129. [Google Scholar] [CrossRef]
- Abal, E.G.; Dennison, W.C. Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Mar. Freshw. Res. 1996, 47, 763–771. [Google Scholar] [CrossRef]
- Burfeind, D.D.; Udy, J.W. The effects of light and nutrients on Caulerpa taxifolia and growth. Aquat. Bot. 2009, 90, 105–109. [Google Scholar] [CrossRef]
- Bennett, J.; Fisk, G.; Abal, E.; Stevens, T.; Connolly, R.; Schlacher, T.; Udy, N.; Rissik, D.; Zeller, B.; Winning, M.; et al. Towards Understanding the Ecological Health and Character of Moreton Bay. In Proceedings of the 2nd Queensland Coastal Conference, Gold Coast, Australia, 13–15 May 2009; Gunn, J., Patmore, D., Mogg, N., Stuart, G., Hunt, S., Tindale, N., Saltner, L., Vains, J., Eds.; Queensland Coastal Conference: Brisbane, Australia, 2009; pp. 1–6. [Google Scholar]
- Olds, A.D.; Pitt, K.A.; Maxwell, P.S.; Connolly, R.M. Synergistic effects of reserves and connectivity on ecological resilience. J. Appl. Ecol. 2012, 49, 1195–1203. [Google Scholar] [CrossRef]
- Watkinson, A.J.; O’Neil, J.M.; Dennison, W.C. Ecophysiology of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia. Harmful Algae 2005, 4, 697–715. [Google Scholar] [CrossRef]
- National Land and Water Resources Audit (NLWRA), Australian Agriculture Assessment 2001; NLWRA: Canberra, Australia, 2001.
- Capelin, M.; Koln, P.; Hoffenberg, P. Land Use, Land Cover and Land Degradation in the Catchment of Moreton Bay. In Moreton Bay and Catchment; Tibbetts, I.R., Hall, N.J., Dennison, W.C., Eds.; School of Marine Science, University of Queensland: Brisbane, Australia, 1998. [Google Scholar]
- Neil, D.T. Moreton Bay and Its Catchment: Seascape and Landscape, Development and Degradation. In Moreton Bay and Catchment; Tibbetts, I.R., Hall, N.J., Dennison, W.C., Eds.; School of Marine Science, University of Queensland: Brisbane, Australia, 1998. [Google Scholar]
- Olley, J.; Wilkinson, S.; Caitcheon, G.; Reid, A. Protecting Moreton Bay: How Can We Reduce Sediment and Nutrient Loads by 50%? In Procedings of the 9th International RiverSymposium, Brisbane, Australia, 4–7 September 2006; International RiverSymposium: Brisbane, Australia, 2006; pp. 1–9. [Google Scholar]
- Wallbrink, P.J. Quantifying the erosion processes and land-uses which dominate fine sediment supply to Moreton Bay, Southeast Queensland, Australia. J. Environ. Radioactiv. 2004, 76, 67–80. [Google Scholar] [CrossRef]
- Hancock, G.; Caitcheon, G.G. Sediment Sources and Transport to the Logan-Albert River Estuary during the January 2008 Flood Event; CSIRO Water for a Healthy Country Flagship: Collingwood, Australia, 2010; p. 46. [Google Scholar]
- Olley, J.; Burton, J.; Smolders, K.; Pantus, F.; Pietsch, T. The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-East Queensland, Australia. Hydrol. Process. 2013, 26, 885–895. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar]
- Olley, J.; Ward, D.; Pietsch, T.; McMahon, J.; Laceby, P.; Saxton, N.; Rickard, B.; Rose, C.; Pantus, F. Phase 2a Report: Rehabilitation Priorities Knapp Creek—Final Report; Griffith University: Brisbane, Australia, 2009. Available online: http://www.healthywaterways.org/HealthyCountry/Resources/ScienceandPlanningResources.aspx (accessed on 20 May 2013).
- McKergow, L.A.; Weaver, D.M.; Prosser, I.P.; Grayson, R.B.; Reed, A.E.G. Before and after riparian management: Sediment and nutrient exports from a small agricultural catchment, Western Australia. J. Hydrol. 2003, 270, 253–272. [Google Scholar] [CrossRef]
- Holl, K.D.; Aide, T.M. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [Google Scholar] [CrossRef]
- Leigh, C.; Qu, X.; Zhang, Y.; Kong, W.; Meng, W.; Hanington, P.; Speed, R.; Gippel, C.; Bond, N.; Catford, J.; et al. Assessment of River Health in the Liao River Basin (Taizi Sub-Catchment). Brisbane, Australia; International Water Centre: Brisbane, Australia, 2012; p. 131. [Google Scholar]
- Bunn, S.E.; Davies, P.M.; Mosisch, T.D. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw. Biol. 1999, 41, 333–345. [Google Scholar]
- Burford, M.A.; O’Donohue, M.J. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshw. Biol. 2006, 51, 973–982. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Klausen, C.; Nielsen, P.H.; Burford, M.; Jørgensen, N.O.G. Detection of activity among uncultured Actinobacteria in a drinking water reservoir. FEMS Microbiol. Ecol. 2006, 55, 432–438. [Google Scholar] [CrossRef]
- Cools, J.; Broekx, S.; Vandenberghe, V.; Sels, H.; Meynaerts, E.; Vercaemst, P.; Seuntjens, P.; van Hulle, S.; Wustenberghs, H.; Bauwens, W.; et al. Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environ. Model. Softw. 2011, 26, 44–51. [Google Scholar] [CrossRef]
- Humborg, C.; Andersen, H.; Mörth, C.; Stålnacke, P.; Hasler, B.; Zylicz, T.; Wulff, F. RECOCA Final Report: Reduction of Baltic Sea Nutrient Inputs and Cost Allocation within the Baltic Sea Catchment. 2012. Available online: http://www.bonusportal.org/files/1603/RECOCA_Final_Report.pdf (accessed on 12 March 2013).
- Rolfe, J.; Donaghy, P.; Alam, K.; O’Dea, G.; Miles, R. Considering the Economic and Social Impacts of Protecting Environmental Values in Specific Moreton Bay/SEQ, Mary River Basin/Great Sandy Strait Region and Douglas Shire Waters; Institute for Sustainable Regional Development, Central Queensland University: Rockhampton, Australia, 2005. [Google Scholar]
- Alam, K.; Rolfe, J.; Donaghy, P. Assessing the cost-effectiveness of water quality interventions in South-East Queensland. Aus. J. Environ. Manag. 2008, 15, 30–40. [Google Scholar] [Green Version]
- Binney, J. Managing What Matters: The Cost of Environmental Decline in SEQ; Marsden Jacob Associates: Brisbane, Australia, 2010; p. 78. [Google Scholar]
- Binney, J.; James, D. Sharing the Load: A Collaborative Approach to Investing in South East Queensland’s Waterways; Final Report; MainStream: Brisbane, Australia, 2011; p. 55. [Google Scholar]
- Hall, M. The Cost of Pollution: Supporting Cost-Effective Options Evaluation and Pollution Reduction; Technical Report No. 61; Urban Water Security Research Alliance: Brisbane, Australia, 2012; p. 99. [Google Scholar]
- Hall, M. Extended Cost-Effectiveness of Water Supply Options: Case Study of the Total Water Cycle Management Plan for Moreton Bay Regional Council; Technical Report No. 88; Urban Water Security Research Alliance: Brisbane, Australia, 2012; p. 54. [Google Scholar]
- Hermoso, V.; Pantus, F.; Olley, J.O.N.; Linke, S.; Mugodo, J.; Lea, P. Systematic planning for river rehabilitation: Integrating multiple ecological and economic objectives in complex decisions. Freshw. Biol. 2012, 57, 1–9. [Google Scholar]
- Pagiola, S. Payments for Environmental Services: An Introduction; Environment Department, World Bank: Washington, DC, USA, 2006; p. 15. [Google Scholar]
- Farley, J.; Costanza, R. Payments for ecosystem services: From local to global. Ecol. Econ. 2010, 69, 2060–2068. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Leigh, C.; Burford, M.A.; Connolly, R.M.; Olley, J.M.; Saeck, E.; Sheldon, F.; Smart, J.C.R.; Bunn, S.E. Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea. Water 2013, 5, 780-797. https://doi.org/10.3390/w5020780
Leigh C, Burford MA, Connolly RM, Olley JM, Saeck E, Sheldon F, Smart JCR, Bunn SE. Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea. Water. 2013; 5(2):780-797. https://doi.org/10.3390/w5020780
Chicago/Turabian StyleLeigh, Catherine, Michele A. Burford, Rod M. Connolly, Jon M. Olley, Emily Saeck, Fran Sheldon, James C.R. Smart, and Stuart E. Bunn. 2013. "Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea" Water 5, no. 2: 780-797. https://doi.org/10.3390/w5020780
APA StyleLeigh, C., Burford, M. A., Connolly, R. M., Olley, J. M., Saeck, E., Sheldon, F., Smart, J. C. R., & Bunn, S. E. (2013). Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea. Water, 5(2), 780-797. https://doi.org/10.3390/w5020780