Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China
Abstract
:1. Introduction
2. Study Area
3. Available Data and Methods
3.1. Data Collection
Basin | Gauge station | Longitude (° E) | Latitude (° N) | Drainage Area (km2) |
---|---|---|---|---|
UNRB | Shihuiyao | 125°19'12'' | 50°03'00'' | 17,205 |
LNRB | Dalai | 124°16'12'' | 45°33'00'' | 204,510 |
USSRB | Gaolichengzi | 127°13'48'' | 42°21'00'' | 4,728 |
LSSRB | Fuyu | 124°49'12'' | 45°10'12'' | 67,055 |
LSRB | Jimusi | 130°19'12'' | 46°48'00'' | 234,799 |
3.2. Trend Analysis
3.3. Change-Point Detection
3.4. Quantitative Assessment of the Effects of Climate Variation and Human Activities on the Runoff
4. Results
4.1. Long-Term Changes in Precipitation and Potential Evapotranspiration
Basin | Gauge Station | P (mm) | PET (mm) | R (mm) |
---|---|---|---|---|
UNRB | Shihuiyao | 507 | 731 | 161 |
LNRB | Dalai | 450 | 963 | 81 |
USSRB | Gaolichengzi | 815 | 814 | 493 |
LSSRB | Fuyu | 656 | 842 | 173 |
LSRB | Jimusi | 563 | 847 | 112 |
Factor | Mean Value (mm/a) | Trend Rate (mm/10 a) | Mann-Kendall Test | Moving t-test Change-Point Analysis | |
---|---|---|---|---|---|
Z | Positive Significance | ||||
Precipitation | 563 | −6 | −0.74 | — | — |
PET | 878 | 1 | 0.27 | — | — |
Runoff | 116 | −10 | −2.61 | 0.95 | 1974 |
4.2. Long-Term Changes in Runoff and Change Point Detection
4.3. Relative Changes in Precipitation, Potential Evapotranspiration and Runoff for 1960–1974
Basin | Period | ΔP | ΔPET | ΔR | |||
---|---|---|---|---|---|---|---|
mm | % | mm | % | mm | % | ||
UNRB | 1960–1974 | — | — | — | — | — | — |
1975–1989 | −5 | −1 | 8 | 1 | 3 | 2 | |
1990–1999 | 30 | 6 | −3 | −0.4 | 17 | 10 | |
2000–2009 | −26 | −5 | 41 | 6 | −40 | −24 | |
1975–2009 | −1 | −0.2 | 14 | 2 | −6 | −3 | |
LNRB | 1960–1974 | — | — | — | — | — | — |
1975–1989 | 19 | 4 | 21 | 2 | −12 | −12 | |
1990–1999 | 40 | 9 | −10 | −1 | 19 | 20 | |
2000–2009 | −51 | −11 | 28 | 3 | −51 | −55 | |
1975–2009 | 5 | 1 | 14 | 2 | −14 | −14 | |
USSRB | 1960–1974 | — | — | — | — | — | — |
1975–1989 | −81 | −9 | 4 | 0.5 | −92 | −17 | |
1990–1999 | −43 | −5 | −21 | −3 | −62 | −11 | |
2000–2009 | −65 | −8 | −16 | −2 | −132 | −24 | |
1975–2009 | −65 | −8 | −9 | −1 | −95 | −17 | |
LSSRB | 1960–1974 | — | — | — | — | — | — |
1975–1989 | −13 | −2 | 9 | 1 | −32 | −16 | |
1990–1999 | −6 | −1 | −5 | −1 | −30 | −15 | |
2000–2009 | −38 | −6 | 21 | 3 | −48 | −24 | |
1975–2009 | −18 | −3 | 8 | 1 | −36 | −18 | |
LSRB | 1960–1974 | — | — | — | — | — | — |
1975–1989 | −36 | −6 | 22 | 3 | −26 | −19 | |
1990–1999 | 1 | 0.1 | −7 | −1 | −15 | −11 | |
2000–2009 | −52 | −9 | 9 | 1 | −64 | −46 | |
1975–2009 | −30 | −5 | 10 | 1 | −34 | −24 |
4.4. Quantitative Assessment of the Impact of Climate Variation and Human Activities on the Runoff
Basin | Period | R | P | PET | ΔR | ΔRclim | ΔRhum | ||
---|---|---|---|---|---|---|---|---|---|
mm | mm | mm | mm | mm | % | mm | % | ||
UNRB | 1960–1974 | 165 | 507 | 724 | |||||
1975–1989 | 168 | 502 | 732 | 3 | −5 | 39 | 8 | 61 | |
1990–1999 | 181 | 537 | 721 | 17 | 20 | 86 | −3 | 14 | |
2000–2009 | 125 | 481 | 765 | −40 | −22 | 55 | −18 | 45 | |
LNRB | 1960–1974 | 93 | 447 | 953 | |||||
1975–1989 | 82 | 466 | 974 | −12 | 3 | 17 | −14 | 83 | |
1990–1999 | 112 | 487 | 943 | 19 | 16 | 85 | 3 | 15 | |
2000–2009 | 42 | 396 | 981 | −51 | −9 | 18 | −42 | 82 | |
USSRB | 1960–1974 | 559 | 861 | 820 | |||||
1975–1989 | 467 | 780 | 824 | −92 | −60 | 65 | −32 | 35 | |
1990–1999 | 497 | 818 | 799 | −62 | −26 | 42 | −36 | 57 | |
2000–2009 | 427 | 795 | 805 | −132 | −44 | 34 | −88 | 66 | |
LSSRB | 1960–1974 | 202 | 671 | 835 | |||||
1975–1989 | 170 | 658 | 845 | −32 | −8 | 27 | −23 | 73 | |
1990–1999 | 172 | 665 | 830 | −30 | −2 | 6 | −28 | 94 | |
2000–2009 | 154 | 633 | 856 | −48 | −18 | 38 | −30 | 62 | |
LSRB | 1960–1974 | 140 | 586 | 840 | |||||
1975–1989 | 114 | 551 | 862 | −26 | −17 | 63 | −10 | 37 | |
1990–1999 | 125 | 587 | 833 | −15 | 2 | 9 | −17 | 91 | |
2000–2009 | 76 | 534 | 848 | −64 | −14 | 23 | −50 | 78 |
5. Discussion
5.1. Contribution of Climate Variation to Runoff Change in SRB
5.2. Contribution of Human Activities to Runoff Change in SRB
Basin | Time Stage | Paddy Land (103 km2) | Dry Land (103 km2) | Forest (103 km2) | Grassland (103 km2) | Water (103 km2) | Reservoir & Pond (103 km2) | Residential & Industry (103 km2) | Bared Land (103 km2) | Wetland (103 km2) |
---|---|---|---|---|---|---|---|---|---|---|
NRB | 1975 | 1.88 | 82.5 | 113 | 49.1 | 5.55 | 0.374 | 1.13 | 9.46 | 30.5 |
1986 | 1.87 | 80.7 | 97.6 | 68.4 | 7.91 | 0.380 | 5.50 | 11.1 | 19.5 | |
1996 | 4.80 | 85.1 | 98.4 | 62.3 | 7.34 | 0.493 | 5.47 | 9.27 | 19.8 | |
2005 | 5.17 | 100 | 102 | 38.5 | 6.00 | 0.488 | 1.80 | 11.5 | 27.7 | |
SSRB | 1975 | 5.05 | 25.3 | 39.9 | 1.27 | 0.682 | 0.502 | 0.556 | 0.151 | 0.486 |
1986 | 5.58 | 24.8 | 35.8 | 1.54 | 1.22 | 0.734 | 3.22 | 0.232 | 0.249 | |
1996 | 5.78 | 24.5 | 35.4 | 1.65 | 1.21 | 0.673 | 3.46 | 0.218 | 0.346 | |
2005 | 6.06 | 26.7 | 37.8 | 0.846 | 0.675 | 0.495 | 0.875 | 0.173 | 0.295 | |
LSRB | 1975 | 10.9 | 58.8 | 97.3 | 6.14 | 3.49 | 0.428 | 1.17 | 0.669 | 7.79 |
1986 | 10.9 | 60.6 | 90.6 | 7.14 | 7.35 | 0.654 | 4.80 | 26.5 | 6.00 | |
1996 | 11.8 | 62.5 | 88.9 | 6.70 | 6.38 | 0.624 | 4.94 | 27.1 | 6.21 | |
2005 | 14.7 | 63.8 | 91.0 | 5.00 | 3.46 | 0.591 | 1.67 | 0.803 | 5.72 |
5.3. Uncertainty of the Hydrological Sensitivity Analysis
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Banasik, K.; Hejduk, L. Long-term changes in runoff from a small agricultural catchment. Soil Water Res. 2012, 7, 64–72. [Google Scholar]
- Banasik, K.; Hejduk, L.; Hejduk, A.; Kaznowska, E.; Banasik, J.; Byczkowski, A. Long-term variability of runoff from a small catchment in the region of the Kozienice Forest. Sylwan 2013, 157, 578–586. [Google Scholar]
- Pekarova, P.; Miklanek, P.; Pekar, J.; Demuth, S.; Gustard, A.; Planos, E.; Scatena, F.; Servat, E. Long-term trends and runoff fluctuations of European rivers. In Climate Variability and Change—Hydrological Impacts. Proceedings of the Fifth FRIEND World Conference, Havana, Cuba, 27 November–1 December 2006; pp. 520–525.
- Shi, C.X.; Zhou, Y.Y.; Fan, X.L.; Shao, W.W. A study on the annual runoff change and its relationship with water and soil conservation practices and climate change in the middle Yellow River basin. Catena 2013, 100, 31–41. [Google Scholar] [CrossRef]
- Hao, X.M.; Chen, Y.N.; Xu, C.C. Impacts of climate change and human activities on the surface runoff in the Tarim River basin over the last fifty years. Water Resour. Manag. 2008, 22, 1159–1171. [Google Scholar] [CrossRef]
- Li, F.P.; Zhang, G.X.; Xu, Y.J. Spatiotemporal variability of climate and streamflow in the Songhua River Basin, Northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Zhan, C.S.; Jiang, S.S.; Sun, F.B.; Jia, Y.W.; Niu, C.W.; Yue, W.F. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China. Hydrol. Earth Syst. Sci. 2014, 18, 3069–3077. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Wang, D.B.; Mohanmad, H. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Ye, B.S.; Yang, D.Q.; Kane, D.L. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Tian, F.; Yang, Y.H.; Han, S.M. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China. Water Sci. Technol. 2009, 60, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F.; Tian, Y.; Liu, C.M. Distributed hydrological simulation of the source regions of the Yellow River under environmental changes. Acta Geogr. Sin. 2004, 59, 565–573. (In Chinese) [Google Scholar]
- Wang, G.S.; Xia, J.; Chen, J. Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in Northern China. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Montenegro, A.; Ragab, R. Hydrological response of a Brazilian semi-arid catchment to different land use and climate change scenarios: A modelling study. Hydrol. Process. 2010, 24, 2705–2723. [Google Scholar] [CrossRef]
- Dooge, J.C.I.; Bruen, M.; Parmentier, B. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation. Adv. Water. Resour. 1999, 23, 153–163. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Macroscale water fluxes 2. Water and energy supply control of their inter-annual variability. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Jones, R.N.; Chiew, F.H.S.; Boughtom, W.C.; Zhang, L. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour. 2006, 29, 1419–1429. [Google Scholar] [CrossRef]
- Li, L.-J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.-W.; Jiang, D.-J.; Li, J.-Y.; Qin, D.-Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. 2007, 21, 3485–3491. [Google Scholar]
- Liu, Q.; Yang, Z.; Cui, B.; Sun, T. Temporal trends of hydro-climatic variables and runoff response to climatic variability and vegetation changes in the Yiluo River basin, China. Hydrol. Process. 2009, 23, 3030–3039. [Google Scholar] [CrossRef]
- Zhao, F.F.; Zhang, L.; Xu, Z.X.; David, F.S. Evaluation of methods for estimating the effects of vegetation change and climate change on streamflow. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Wang, W.G.; Shi, Q.X.; Yang, T.; Peng, S.Z.; Xing, W.Q.; Sun, F.C.; Luo, Y.F. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.H.; Zhang, M.F. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Yong, B.; Singh, V.P.; Yang, X.; Yuan, F. Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods. Hydrol. Process. 2011, 25, 2492–2505. [Google Scholar] [CrossRef]
- Dong, L.Q.; Zhang, G.X. The dynamic evolvement and hydrological driving factors of marsh in Nenjiang River basin. Adv. Water Sci. 2013, 24, 177–183. (In Chinese) [Google Scholar]
- Mu, X.M.; Li, Y.; Gao, P.; Shao, H.B.; Wang, F. The runoff declining process and water quality in Songhuajiang River catchment, China under global climatic change. Clean Soil Air Water 2012, 40, 394–401. [Google Scholar] [CrossRef]
- Xu, D.X.; Zhang, G.X.; Yin, X.R. Runoff variation and its impacting factor in Nenjiang River during 1956–2006. Adv. Water Sci. 2009, 20, 416–421. (In Chinese) [Google Scholar]
- Meng, D.J.; Mo, X.G. Assessing the effect of climate change on mean annual runoff in the Songhua River basin, China. Hydrol. Process. 2012, 26, 1050–1061. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. 300. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Chattopadhyay, S.; Jhajharia, D.; Chattopadhyay, G. Trend estimation and univariate forecast of the sunspot numbers: Development and Comparison of ARMA, ARIMA and Autoregressive Neural Network models. C. R. Geosci. 2011, 343, 433–442. [Google Scholar] [CrossRef]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Von Storch, V.H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability: Applications of Statistical Techniques; von Storch, H., Navarra, A., Eds.; Springer-Verlag: Berlin, Germany, 1995; pp. 11–26. [Google Scholar]
- Matouškov, M.; Kliment, Z. Runoff changes in the Šumava Mountains (black forest) and the foothill regions: Extent of influence by human impact and climate change. Water Resour. Manag. 2009, 23, 1813–1834. [Google Scholar] [CrossRef]
- Ma, Z.M.; Kang, S.Z.; Zhang, L.; Tong, L.; Su, X.L. Analysis of impacts of climate change and human activity on streamflow for a river basin in arid region of northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. The response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J. A simple framework for examining the interannual variability of land surface moisture fluxes. J. Clim. 1999, 12, 1911–1917. [Google Scholar] [CrossRef]
- Lu, Z.H.; Xia, Z.Q.; Yu, L.L.; Wang, J.C. Variation of characteristics of annual precipitation and seasonal precipitation in Songhuajiang River Basin. J. China Hydrol. 2012, 32, 62–71. (In Chinese) [Google Scholar]
- Liu, C.M.; Zhang, D.; Liu, X.M.; Zhao, C.S. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960−2007). J. Geogr. Sci. 2012, 22, 3–14. [Google Scholar] [CrossRef]
- Li, D.L.; Wang, W.S.; Hu, S.X.; Li, Y.Q. Characteristics of annual runoff variation in major rivers of China. Hydrol. Process. 2012, 26, 2866–2877. [Google Scholar] [CrossRef]
- Hu, S.S.; Liu, C.M.; Zheng, H.X.; Wang, Z.G.; Yu, J.J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J. Geogr. Sci. 2012, 22, 895–905. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.J.; Mark, A.B.; Deng, P.; Huang, P.N. Quantitative assessment of the impact of climate variability and human activities on runoff changes for the upper reaches of Weihe River. Stoch. Environ. Res. Risk Assess. 2014, 28, 333–346. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, G.; Xu, Y.J. Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China. Water 2014, 6, 3320-3338. https://doi.org/10.3390/w6113320
Li F, Zhang G, Xu YJ. Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China. Water. 2014; 6(11):3320-3338. https://doi.org/10.3390/w6113320
Chicago/Turabian StyleLi, Fengping, Guangxin Zhang, and Yi Jun Xu. 2014. "Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China" Water 6, no. 11: 3320-3338. https://doi.org/10.3390/w6113320
APA StyleLi, F., Zhang, G., & Xu, Y. J. (2014). Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China. Water, 6(11), 3320-3338. https://doi.org/10.3390/w6113320