Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Wetland Characteristics
Targeted for current study | Height, structure, and temporal characteristics of wetland vegetation | Expected energy scattering * |
---|---|---|
Yes | Open water, with or without submerged aquatic vegetation. | Unbroken water surface should exhibit specular reflectance throughout the growing season. |
Yes | Very-low growing floating-mat vegetation (e.g., water lilies, duckweed, and pondweed). | Vegetation cover has very low stature that conforms to the surface of the water. Scattering characteristics should be comparable to slightly roughened open water (likely not distinguishable from open water). |
Yes | Medium height to tall annual vertical emergent vegetation (e.g., bulrush and wild rice). | Water surface is not vegetated at the start of the growing season, but is punctuated by stems as plants emerge. Stem and foliar development continue over the season. Specular reflectance at the beginning of the season shifts to double-bounce scattering after emergent plant structures gain height and biomass sufficient to deflect the radar signal from/to the water surface. Potential to distinguish between bulrush and wild rice communities with multi-year monitoring because bulrush begins each season in the same locations as the previous season(s) anchored by underwater rhizomes while wild rice starts from seed each year, with emergence within a waterbody dependent on how wind and water distributed the previous year’s seeds and/or how maturing plants were entrained as floating mats under windy conditions and rising water levels. |
Yes | Tall vertical emergent vegetation with perennial vertical structures (e.g., cattails). New stems and leaves emerge annually, but senesced structures from previous seasons remain in place for multiple growth cycles. | Senesced emergent stems surrounded by exposed surface water should enable double-bounce scattering at the onset of the growing season. Double-bounce response could diminish as the new season’s stems emerge and accumulate biomass if the combined new and old biomass obscures the water’s surface. |
No ** | Low- to medium-height annual vertical emergent vegetation (e.g., sedge meadows). | Vegetation cover often is dense, obscuring much of the water’s surface and reducing the opportunity for double-bounce scattering. Rough-scattering response is likely, with occasional small areas of specular or double-bounce scatter where sufficient canopy openings occur. |
2.2. SAR Data
Year | 1st overpass | 2nd overpass | 3rd overpass | 4th overpass |
---|---|---|---|---|
2009 | 15 May ** | 2 July | 26 July | 12 September |
2010 | 20 May | 13 June ** | 31 July | 24 August ** |
2011 | 15 May ** | 8 June ** | 26 July ** | 12 September ** |
2012 | 2 June | 20 July ** | 13 August ** | 6 September |
2.3. Ancillary Data
Sensor | 2009 | Sensor | 2010 | Sensor | 2011 | Sensor | 2012 |
---|---|---|---|---|---|---|---|
ETM+ | 22 May | ETM+ | 25 May | TM | 5 June | ETM+ | 14 May |
TM | 30 May | TM | 18 June | ETM+ | 29 June | ETM+ | 1 July |
TM | 1 July | ETM+ | 28 July | ETM+ | 31 July | ETM+ | 2 August |
TM | 18 August | TM | 5 August | TM | 24 August | ETM+ | 18 August |
ETM+ | 26 August | ETM+ | 29 August | TM | 9 September | ETM+ | 26 August |
TM | 19 September | ETM+ | 3 September |
2.4. Evaluation of SAR Data Derivatives
Developing Wetland Summaries
3. Results
3.1. Evaluation of SAR Maps of Open Water
3.2. Evaluation of SAR Polarimetric Decomposition Layers
3.3. Integrating Information for Wetland Summaries
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Marshall, C.H.; Pielke, R.A., Sr.; Steyaert, L.T. Crop freezes and land-use change in Florida. Nature 2003, 426, 29–30. [Google Scholar] [CrossRef]
- Baldassarre, G.A.; Bolen, E.G. Waterfowl Ecology and Management; John Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- Karl, T.R.; Melilo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Terrestrial Wetland Global Change Research Network. Available online: http://www.umesc.usgs.gov/twgcrn.html (accessed on 21 March 2014).
- Eckles, S.D. Linking science, policy, and management to conserve wetlands in agricultural landscapes. Ecol. Appl. 2011, 21, S1–S2. [Google Scholar] [CrossRef]
- Brisco, B.; Kapfer, M.; Hirose, T.; Tedford, B.; Liu, J. Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Can. J. Remote Sens. 2011, 37, 82–92. [Google Scholar] [CrossRef]
- Brisco, B.; Schmitt, A.; Murnaghan, K.; Kaya, S.; Roth, A. SAR polarimetric change detection for flooded vegetation. Int. J. Digit. Earth 2013, 6, 103–114. [Google Scholar] [CrossRef]
- Brisco, B.; Short, N.; van der Sanden, J.; Landry, R.; Raymond, D. A semi-automated tool for surface water mapping with Radarsat-1. Can. J. Remote Sens. 2009, 35, 336–344. [Google Scholar] [CrossRef]
- Corcoran, J.M.; Knight, J.F.; Gallant, A.L. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota. Remote Sens. 2013, 5, 3212–3238. [Google Scholar] [CrossRef]
- Rover, J.; Wylie, B.K.; Ji, L. A self-trained classification technique for producing 30 m percent-water maps from Landsat data. Int. J. Remote Sens. 2010, 31, 2197–2203. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Fry, J.A.; Smith, J.H.; Homer, C.G. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Remote Sens. Environ. 2010, 114, 1286–1296. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Gallant, A.L. What you should know about land-cover data. J. Wildl. Manag. 2009, 73, 796–805. [Google Scholar] [CrossRef]
- Wilen, B.O.; Bates, M.K. The US Fish and Wildlife Service’s National Wetlands Inventory project. Vegetatio 1995, 118, 153–169. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Smith, K.B.; Brunzell, S.M.; Kasischke, E.S.; Romanowicz, E.A.; Richardson, C.J. Remote monitoring of regional inundation patterns and hydroperiod in the Greater Everglades using synthetic aperture radar. Wetlands 2005, 1, 176–191. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Wdowinski, S.; Sang-Wan, K.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R. Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sens. Environ. 2008, 112, 681–696. [Google Scholar] [CrossRef]
- Euliss, N.H., Jr.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Laubhan, M.K.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 2004, 24, 448–458. [Google Scholar] [CrossRef]
- Butcher, R.D. America’s National Wildlife Refuges, 2nd ed.; Taylor Trade Publishing: Lanham, MD, USA, 2008; pp. 146–147. [Google Scholar]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Li, J.; Chen, W. A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. Int. J. Remote Sens. 2005, 26, 5051–5069. [Google Scholar] [CrossRef]
- Lang, M.W.; Kasischke, E.S.; Prince, S.D.; Pittman, K.W. Assessment of C-band synthetic aperture radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, U.S.A. Remote Sens. Environ. 2008, 112, 4120–4130. [Google Scholar] [CrossRef]
- Henderson, F.M.; Lewis, A.J. Radar detection of wetland ecosystems: A review. Int. J. Remote Sens. 2008, 29, 5809–5835. [Google Scholar] [CrossRef]
- MacDonald, Dettwiler and Associates Ltd. Radarsat-2 products. Available online: http://gs.mdacorporation.com/SatelliteData/Radarsat2/Products.aspx (accessed on 18 October 2013).
- White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuk, L. Radarsat-2 beam mode selection for surface water and flood mapping. Can. J. Remote Sens. 2014. submitted for publication. [Google Scholar]
- Kaya, S.; Brisco, B.; Cull, A.; Gallant, A.; Sadinski, W.; Thompson, D. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN). In Proceedings of the Remote Sensing and Hydrology 2010 Symposium, Jackson Hole, WY, USA, 27–30 September 2010.
- RAWS USA Climate Archive. Available online: http://www.raws.dri.edu (accessed on 17 December 2013).
- U.S. Fish and Wildlife Service. National Wetlands Inventory. Available online: http://www.fws.gov/wetlands (accessed on 17 December 2013).
- Davis, D.U.S. Department of Agriculture, National Agriculture Imagery Program (NAIP) Fact Sheet. Available online: http://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf (accessed on 21 October 2013).
- U.S. Department of Agriculture; Natural Resources Conservation Service. Geospatial Data Gateway. Available online: http://datagateway.nrcs.usda.gov (accessed on 17 December 2013).
- U.S. Geological Survey. Landsat Missions. Available online: http://landsat.usgs.gov (accessed on 17 December 2013).
- Palmer, W.C. Meteor. Drought; U.S. Department of Commerce: Washington, DC, USA, 1965. [Google Scholar]
- National Climatic Data Center. Climate Data Online. Available online: http://www.ncdc.noaa.gov/cdo-web (accessed on 18 March 2014).
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Chander, G.; Huang, C.; Yang, L.; Homer, C.; Larson, C. Developing consistent Landsat data sets for large area applications: The MRLC 2001 protocol. IEEE Geosci. Remote Sens. Lett. 2009, 6, 777–781. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Barsi, J.A. Revised Landsat-5 Thematic Mapper radiometric calibration. IEEE Geosci. Remote Sens. Lett. 2007, 4, 490–494. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Iowa State University Press: Ames, IA, USA, 1989; pp. 107–134. [Google Scholar]
- National Aeronautics and Space Administration; Jet Propulsion Laboratory. Wetlands—Global Monitoring of Wetland Extent and Dynamics. Available online: http://wetlands.jpl.nasa.gov/science/index.html (accessed on 17 December 2013).
- Brisco, B.; Touzi, R.; van der Sanden, J.J.; Charbonneau, F.; Pultz, T.J.; D’lorio, M. Water resource applications with Radarsat-2—A preview. Int. J. Digit. Earth 2008, 1, 130–147. [Google Scholar] [CrossRef]
- Lewis, A.J. Geomorphic and hydrologic applications of active microwave remote sensing. In Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd ed.; Henderson, F.M., Lewis, A.J., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; Volume 2, pp. 567–629. [Google Scholar]
- Koch, M.; Schmid, T.; Reyes, M.; Gumuzzio, J. Evaluating full polarimetric C- and L-band data for mapping wetland conditions in a semi-arid environment in central Spain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1033–1044. [Google Scholar] [CrossRef]
- Schmitt, A.; Brisco, B. Wetland monitoring using the curvelet-based change detection method on polarimetric SAR imagery. Water 2013, 5, 1036–1051. [Google Scholar] [CrossRef]
- Stein, B.R.; Zheng, B.; Kokkinidis, I.; Kayastha, N.; Seigler, T.; Gokkaya, K.; Gopalakrishnan, R.; Hwang, W.H. An efficient remote sensing solution to update the NCWI. Photogramm. Eng. Remote Sens. 2012, 78, 537–547. [Google Scholar]
- Gala, T.S.; Melesse, A.M. Monitoring prairie wet area with an integrated Landsat ETM+, Radarsat-1 SAR and ancillary data from Lidar. Catena 2012, 95, 12–23. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- MODIS Active Fire & Burned Area Products. Available online: http://modis-fire.umd.edu (accessed on 17 December 2013).
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffman, L.; Savenije, H.H.G. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, P. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens. Environ. 2011, 115, 990–1002. [Google Scholar] [CrossRef]
- Dellepiane, S.G.; Angiati, E. A new method of cross-normalization and multi-temporal visualization of SAR images for the detection of flooded areas. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2765–2779. [Google Scholar] [CrossRef]
- Scheuchl, B.; Flett, D.; Caves, R.; Cumming, I. Potential of Radarsat-2 data for operational sea ice monitoring. Can. J. Remote Sens. 2004, 30, 448–461. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gallant, A.L.; Kaya, S.G.; White, L.; Brisco, B.; Roth, M.F.; Sadinski, W.; Rover, J. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data. Water 2014, 6, 694-722. https://doi.org/10.3390/w6030694
Gallant AL, Kaya SG, White L, Brisco B, Roth MF, Sadinski W, Rover J. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data. Water. 2014; 6(3):694-722. https://doi.org/10.3390/w6030694
Chicago/Turabian StyleGallant, Alisa L., Shannon G. Kaya, Lori White, Brian Brisco, Mark F. Roth, Walt Sadinski, and Jennifer Rover. 2014. "Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data" Water 6, no. 3: 694-722. https://doi.org/10.3390/w6030694
APA StyleGallant, A. L., Kaya, S. G., White, L., Brisco, B., Roth, M. F., Sadinski, W., & Rover, J. (2014). Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data. Water, 6(3), 694-722. https://doi.org/10.3390/w6030694