Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers
Abstract
:1. Introduction
2. Experimental
2.1. Study Area
2.2. Storm Runoff Observation and SS Concentration Analysis
Rainfall characteristic | Amount or Time |
---|---|
Total rainfall amount (Σ P) (mm) | 52.1 |
Start time of the rainfall event | 16:15 on 20 May 2003 |
End time of the rainfall event | 11:15 on 21 May 2003 |
Duration of rainfall (hours) | 19 |
A maximum 1-hour rainfall intensity (mm) | 24.6 |
The time of a maximum 1hour rainfall intensity | 18:15 on 20 May 2003 |
2.3. Stable Isotope Analysis
2.4. Storm Runoff Hydrograph Separation Using Tracer Information
3. Results and Discussion
3.1. Hydrograph Separation by Stable Isotope Ratio
Runoff component | Symbol | Runoff Amount ( mm) | Percentage (%) |
---|---|---|---|
Total runoff amount | Σ Qt | 2.17 | |
The pre-event component water | Σ Qpre | 1.66 | |
The event component water | Σ Qevt | 0.50 | |
The ratio of pre-event component water to total runoff amount | Σ Qpre/Σ Qt | 77 | |
The ratio of event component water to total runoff amount | Σ Qevt/Σ Qt | 23 | |
The ratio of total runoff amount to total rainfall amount | Σ Qt/Σ P | 4.2 | |
The ratio of pre-event component water to total rainfall amount | Σ Qpre/Σ P | 3.2 | |
The ratio of event component water to total rainfall amount | Σ Qevt/Σ P | 1.0 |
3.2. Runoff Generation Mechanism
3.3. Runoff Component and SS Concentration
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, H.W.; Trobitz, H.K. Influence of some watershed variables on a major flood. J. For. 1949, 47, 347–356. [Google Scholar]
- Kawaguchi, T. Suggestion to the elucidation method of influence exerted on the sediment discharge of a forest. For. Technol. 1952, 124, 9–13. (in Japanese). [Google Scholar]
- Namba, S.; Kawaguchi, T. Influences of some factors upon soil losses from large mountainous watersheds. Bull. For. For. Prod. Res. Inst. 1965, 173, 93–166. (in Japanese). [Google Scholar]
- Kim, H.; Marutani, T.; Miyazaki, T. Volumetric changes in suspended sediment load and bed load from mountainous catchments. J. Jpn. Soc. Eros. Control. Eng. 2003, 55, 21–23. (in Japanese). [Google Scholar]
- Chappell, N.A.; Douglas, I.; Hanapi, J.M.; Tych, W. Sources of suspended sediment within a tropical catchment recovering from selective logging. Hydrol. Process. 2004, 18, 685–701. [Google Scholar] [CrossRef]
- Fukuyama, T.; Onda, Y.; Gomi, T.; Yamamoto, K.; Kondo, N.; Miyata, S; Kosugi, K.; Mizugaki, S.; Tsubonuma, N. Quantifying the impact of forest management practice on the runoff of the surface-derived suspended sediment using fallout radionuclides. Hydrol. Process. 2010, 24, 596–607. [Google Scholar] [CrossRef]
- Wanga, J.; Edwards, P.J.; Wood, F. Turbidity and suspended-sediment changes from stream-crossing construction on a forest haul road in West Virginia, USA. Int. J. For. Eng. 2013, 24, 76–90. [Google Scholar]
- Shinomiya, Y.; Tamai, K.; Kobayashi, M.; Ohnuki, Y.; Shimizu, T.; Iida, S.; Nobuhiro, T.; Sawano, S.; Tsuboyama, Y.; Hiruta, Y. The behavior of radioactive materials in stream water from a forested watershed. Kanto J. For. Res. 2013, 64, 53–55. (in Japanese). [Google Scholar]
- Pearce, A.J.; Stewart, M.K.; Sklash, M.G. Storm runoff generation in humid headwater catchments; 1. Where does the water come from? Water Resour. Res. 1986, 22, 1263–1272. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier Science: Amsterdam, The Netherlands, 1998; p. 839. [Google Scholar]
- Soulsby, C.; Malcolm, R.; Helliwell, R.; Ferrier, R.C.; Jenlins, A. Isotope hydrology of the Allt a’ Mharcaidh catchment, Cairngorms, Scotland: Implications for hydrological pathways and residence times. Hydrol. Process. 2000, 14, 747–762. [Google Scholar] [CrossRef]
- Soulsby, C.; Perty, J.; Brewer, M.J.; Dunn, S.M.; Ott, B.; Malcom, I.A. Identifying and assessing uncertainty in hydrological pathway: A novel approach to end member mixing in a Scottish agricultural catchment. J. Hydrol. 2003, 274, 109–128. [Google Scholar] [CrossRef]
- Likens, G.E. Biogeochemistry of a Forested Ecosystem, 3rd ed.; Springer-Verlag: New York, NY, USA, 2013; p. 208. [Google Scholar]
- Williams, G.P. Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol. 1989, 111, 89–106. [Google Scholar] [CrossRef]
- Kurashige, Y. Mechanism of suspended sediment supply to headwater rivers and its seasonal variation in West Central Hokkaido, Japan. Jpn. J. Limnol. 1993, 54, 305–315. [Google Scholar] [CrossRef]
- Eder, A.; Strauss, P.; Krueger, T.; Quinton, J.N. Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenknirchen catchment, Austria). J. Hydrol. 2010, 389, 168–176. [Google Scholar] [CrossRef]
- Kubota, T.; Tsuboyama, Y. Intra-inter-storm oxygen-18 and deuterium variations of rain, throughfall, and stemflow, and two-component hydrograph separation in a small forested catchment in Japan. J. For. Res. 2003, 8, 179–190. [Google Scholar] [CrossRef]
- Gomi, T.; Asano, Y.; Uchida, T.; Onda, Y.; Sidle, R.C.; Miyata, S.; Kosugi, K.; Mizugaki, S.; Fukuyama, T.; Fukushima, T. Evaluation of storm runoff pathways in steep nested catchments draining a Japanese cypress forest in central Japan: a geochemical approach. Hydrol. Process. 2010, 24, 550–566. [Google Scholar] [CrossRef]
- Chaplot, V.; Ribolzi, O. Hydrograph separation to improve understanding of dissolved organic carbon dynamics in headwater catchments. Hydrol. Process. 2013. [Google Scholar] [CrossRef]
- Hooper, R.P.; Shoemaker, C.A. A comparison of chemical and isotopic hydrograph separation. Water Resour. Res. 1986, 22, 1444–1454. [Google Scholar] [CrossRef]
- Buttle, J.M. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr. 1994, 18, 16–41. [Google Scholar] [CrossRef]
- Burt, T.; Pinay, G.; Sabater, S. What do we still need to know about the ecohydrology of riparian zones? Ecohydology 2010, 3, 373–377. [Google Scholar] [CrossRef]
- Kirkby, M.J. Hillslope Hydrology; Wiley: Chichester, UK, 1978; p. 389. [Google Scholar]
- Water Resources Laboratory and Flood Control Laboratory. Statistical reports of hydrological observation at the Tsukuba Experimental Watershed (May, 1978–December, 1987). Bull. For. For. Prod. Res. Inst. 1993, 364, 125–168. (in Japanese). [Google Scholar]
- Ohnuki, Y.; Yoshinaga, S.; Noguchi, S. Distribution and physical properties of colluvium and saprolite in unchannelized valleys in Tsukuba Experimental Basin, Japan. J. For. Res. 1999, 4, 207–215. [Google Scholar] [CrossRef]
- Shimizu, A.; Kabeya, N.; Nobuhiro, T.; Zhang, J.; Kubota, T.; Abe, T. Estimation of subsurface structure in Tsukuba Forest Experimental Watershed. Kanto J. For. Res. 2007, 58, 153–156. (in Japanese). [Google Scholar]
- Kabeya, N.; Shimizu, A.; Tsuboyama, Y.; Nobuhiro, T.; Zhang, J. Mean residence times of stream and spring water in a small forested watershed with a thick weathered layer. In Lake Pollution Research Progress; Miranda, F.R., Bernard, L.M., Eds.; NOVA Science: New York, NY, USA, 2009; pp. 289–309. [Google Scholar]
- Zhang, J.; Shimizu, A.; Kabeya, N.; Nobuhiro, T. Research on suspended sediment of upland small forest watershed in Japan. J. Beijing For. Univ. 2005, 27, 12–19. [Google Scholar]
- Shimizu, A.; Kabeya, N.; Nobuhiro, T.; Tsuboyama, Y.; Abe, T.; Kubota, T. Application of erosion and sediment yield model with GIS to a small experimental forest watershed. Kanto J. For. Res. 2006, 57, 299–302. (in Japanese). [Google Scholar]
- Kabeya, N.; Katsuyama, M.; Kawasaki, M.; Ohte, N.; Sugimoto, A. Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan. Hydrol. Process. 2007, 21, 308–322. [Google Scholar] [CrossRef]
- Fujimoto, M.; Ohte, N.; Tani, M. Effects of hillslope topography on hydrological responses in a weathered granite mountain, Japan: Comparison of the runoff response between the valley-head and the side slope. Hydrol. Process. 2008, 22, 2581–2594. [Google Scholar] [CrossRef]
- Steenhuis, T.S.; Hrnčíř, M.; Poteau, D.; Luna, E.J.R.; Tilahun, S.A.; Caballero, L.A.; Guzman, C.D.; Stoof, C.R.; Šanda, M.; Yitaferu, B.; et al. A saturated excess runoff pedotransfer function for vegetated watersheds. Vadose. Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Kabeya, N.; Shimizu, A.; Tamai, K.; Iida, S.; Shimizu, T. Transit times of soil water in thick soil and weathered gneiss layers using deuterium excess modelling. In Conceptual and Modelling Studies of Integrated Groundwater, Surface Water, and Ecological Systems (IAHS Publ. 345); Abesser, C., Naütman, G., Hill, M.C., Blöshl, G., Laksmanan, E., Eds.; IAHS Press: Wallingford, UK, 2011; pp. 163–168. [Google Scholar]
- Anderson, S.P.; Dietrich, W.E.; Montgomery, D.R.; Torres, R.; Conrad, M.E.; Loague, K. Subsurface flow paths in a steep, unchanneled catchment. Water Resour. Res. 1997, 33, 2637–2653. [Google Scholar] [CrossRef]
- Lenzi, M.A.; Marchi, L. Suspended sediment load during floods in a small stream of the Dolomites (Northeastern Italy). Catena 2000, 39, 267–282. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kabeya, N.; Shimizu, A.; Zhang, J.-J.; Nobuhiro, T. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers. Water 2014, 6, 1671-1684. https://doi.org/10.3390/w6061671
Kabeya N, Shimizu A, Zhang J-J, Nobuhiro T. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers. Water. 2014; 6(6):1671-1684. https://doi.org/10.3390/w6061671
Chicago/Turabian StyleKabeya, Naoki, Akira Shimizu, Jian-Jun Zhang, and Tatsuhiko Nobuhiro. 2014. "Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers" Water 6, no. 6: 1671-1684. https://doi.org/10.3390/w6061671
APA StyleKabeya, N., Shimizu, A., Zhang, J. -J., & Nobuhiro, T. (2014). Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers. Water, 6(6), 1671-1684. https://doi.org/10.3390/w6061671